Information-based methods for neuroimaging: analyzing structure, function and dynamics

The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability...

Full description

Saved in:
Bibliographic Details
Main Author: Daniele Marinazzo (auth)
Other Authors: Miguel Angel Munoz (auth), Jesus M. Cortes (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2015
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_50228
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2015 xx |||||o ||| 0|eng d
020 |a 978-2-88919-502-2 
020 |a 9782889195022 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-502-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAN  |2 bicssc 
100 1 |a Daniele Marinazzo  |4 auth 
700 1 |a Miguel Angel Munoz  |4 auth 
700 1 |a Jesus M. Cortes  |4 auth 
245 1 0 |a Information-based methods for neuroimaging: analyzing structure, function and dynamics 
260 |b Frontiers Media SA  |c 2015 
300 |a 1 electronic resource (191 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability distributions rather than on specific expectations, can account for all possible non-linearities present in the data in a model-independent fashion.Mutual Information-like methods can also be applied on interacting dynamical variables described by time-series, thus addressing the uncertainty reduction (or information) in one variable by conditioning on another set of variables.In the last years, different Information-based methods have been shown to be flexible and powerful tools to analyze neuroimaging data, with a wide range of different methodologies, including formulations-based on bivariate vs multivariate representations, frequency vs time domains, etc. Apart from methodological issues, the information bit as a common unit represents a convenient way to open the road for comparison and integration between different measurements of neuroimaging data in three complementary contexts: Structural Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain activity. Applications are ubiquitous, starting from resting state in healthy subjects to modulations of consciousness and other aspects of pathophysiology.Mutual Information-based methods have provided new insights about common-principles in brain organization, showing the existence of an active default network when the brain is at rest. It is not clear, however, how this default network is generated, the different modules are intra-interacting, or disappearing in the presence of stimulation. Some of these open-questions at the functional level might find their mechanisms on their structural correlates. A key question is the link between structure and function and the use of structural priors for the understanding of the functional connectivity measures. As effective connectivity is concerned, recently a common framework has been proposed for Transfer Entropy and Granger Causality, a well-established methodology originally based on autoregressive models. This framework can open the way to new theories and applications.This Research Topic brings together contributions from researchers from different backgrounds which are either developing new approaches, or applying existing methodologies to new data, and we hope it will set the basis for discussing the development and validation of new Information-based methodologies for the understanding of brain structure, function, and dynamics. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Neurosciences  |2 bicssc 
653 |a brain connectivity 
653 |a Information Theory 
653 |a neuroinformatics 
653 |a transfer entropy 
653 |a network theory 
653 |a mutual information 
653 |a computational neuroscience 
653 |a functional connectome 
653 |a Granger causality 
653 |a structural connectome 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/1241/information-based-methods-for-neuroimaging-analyzing-structure-function-and-dynamics  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/50228  |7 0  |z DOAB: description of the publication