Insights into Microbe-Microbe Interactions in Human Microbial Ecosystems: Strategies to be Competitive

All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabit...

Full description

Saved in:
Bibliographic Details
Main Author: Clara G. de los Reyes-Gavilan (auth)
Other Authors: Nuria Salazar (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_50338
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88945-052-7 
020 |a 9782889450527 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-052-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSG  |2 bicssc 
100 1 |a Clara G. de los Reyes-Gavilan  |4 auth 
700 1 |a Nuria Salazar  |4 auth 
245 1 0 |a Insights into Microbe-Microbe Interactions in Human Microbial Ecosystems: Strategies to be Competitive 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (116 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as "microbiota" and their collective genomes as "microbiome". These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a "healthy status". The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats.All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as "microbiota" and their collective genomes as "microbiome". These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a "healthy status". The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Microbiology (non-medical)  |2 bicssc 
653 |a bacterial-pathogen infection 
653 |a Quorum Sensing 
653 |a Bifidobacterium 
653 |a Short Chain Fatty Acids 
653 |a Biofilm 
653 |a gnotobiotic mice 
653 |a breast milk 
653 |a human microbiota 
653 |a Bacteroides 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/3916/insights-into-microbe-microbe-interactions-in-human-microbial-ecosystems-strategies-to-be-competitiv  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/50338  |7 0  |z DOAB: description of the publication