Integrating Computational and Neural Findings in Visual Object Perception

The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled br...

Full description

Saved in:
Bibliographic Details
Main Author: Hans P. Op de Beeck (auth)
Other Authors: Judith C. Peters (auth), Rainer Goebel (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_50380
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88919-873-3 
020 |a 9782889198733 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-873-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAN  |2 bicssc 
100 1 |a Hans P. Op de Beeck  |4 auth 
700 1 |a Judith C. Peters  |4 auth 
700 1 |a Rainer Goebel  |4 auth 
245 1 0 |a Integrating Computational and Neural Findings in Visual Object Perception 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (137 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Neurosciences  |2 bicssc 
653 |a object recognition 
653 |a fMRI 
653 |a multimodal data integration 
653 |a neural networks 
653 |a invariance 
653 |a computational neuroscience 
653 |a Computer Vision 
653 |a Feature representation 
653 |a Neurophysiology 
653 |a ventral visual pathway 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/1618/integrating-computational-and-neural-findings-in-visual-object-perception  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/50380  |7 0  |z DOAB: description of the publication