Intelligent Optimization Modelling in Energy Forecasting

Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent de...

Full description

Saved in:
Bibliographic Details
Main Author: Hong, Wei-Chiang (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_50434
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-365-1 
020 |a 9783039283651 
020 |a 9783039283644 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-365-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UY  |2 bicssc 
100 1 |a Hong, Wei-Chiang  |4 auth 
245 1 0 |a Intelligent Optimization Modelling in Energy Forecasting 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (262 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent decades, many energy forecasting models have been continuously proposed to improve forecasting accuracy, including traditional statistical models (e.g., ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman filtering, Bayesian estimation models, etc.) and artificial intelligence models (e.g., artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation models, support vector regression, etc.). Recently, due to the great development of optimization modeling methods (e.g., quadratic programming method, differential empirical mode method, evolutionary algorithms, meta-heuristic algorithms, etc.) and intelligent computing mechanisms (e.g., quantum computing, chaotic mapping, cloud mapping, seasonal mechanism, etc.), many novel hybrid models or models combined with the above-mentioned intelligent-optimization-based models have also been proposed to achieve satisfactory forecasting accuracy levels. It is important to explore the tendency and development of intelligent-optimization-based modeling methodologies and to enrich their practical performances, particularly for marine renewable energy forecasting. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
653 |a Ensemble Empirical Mode Decomposition 
653 |a Brain Storm Optimization 
653 |a asset management 
653 |a institutional investors 
653 |a state transition algorithm 
653 |a kernel ridge regression 
653 |a energy price hedging 
653 |a multi-objective grey wolf optimizer 
653 |a five-year project 
653 |a complementary ensemble empirical mode decomposition (CEEMD) 
653 |a active investment 
653 |a portfolio management 
653 |a Long Short Term Memory 
653 |a time series forecasting 
653 |a LEM2 
653 |a improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 
653 |a feature selection 
653 |a Markov-switching GARCH 
653 |a condition-based maintenance 
653 |a substation project cost forecasting model 
653 |a Gaussian processes regression 
653 |a deep convolutional neural network 
653 |a individual 
653 |a wind speed 
653 |a empirical mode decomposition (EMD) 
653 |a crude oil prices 
653 |a artificial intelligence techniques 
653 |a intrinsic mode function (IMF) 
653 |a multi-step wind speed prediction 
653 |a support vector regression (SVR) 
653 |a short term load forecasting 
653 |a energy futures 
653 |a General Regression Neural Network 
653 |a metamodel 
653 |a sparse Bayesian learning (SBL) 
653 |a commodities 
653 |a ensemble 
653 |a comparative analysis 
653 |a crude oil price forecasting 
653 |a electrical power load 
653 |a differential evolution (DE) 
653 |a fuzzy time series 
653 |a kernel learning 
653 |a short-term load forecasting 
653 |a data inconsistency rate 
653 |a renewable energy consumption 
653 |a long short-term memory 
653 |a energy forecasting 
653 |a modified fruit fly optimization algorithm 
653 |a forecasting 
653 |a combination forecasting 
653 |a Markov-switching 
653 |a weighted k-nearest neighbor (W-K-NN) algorithm 
653 |a hybrid model 
653 |a interpolation 
653 |a particle swarm optimization (PSO) algorithm 
653 |a regression 
653 |a diversification 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2147  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/50434  |7 0  |z DOAB: description of the publication