Invariants of complex and p-adic origami-curves

Origamis (also known as square-tiled surfaces) are Riemann surfaces which are constructed by glueing together finitely many unit squares. By varying the complex structure of these squares one obtains easily accessible examples of Teichmüller curves in the moduli space of Riemann surfaces.Different...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Kremer, Karsten (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: KIT Scientific Publishing 2010
Onderwerpen:
Online toegang:DOAB: download the publication
DOAB: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:Origamis (also known as square-tiled surfaces) are Riemann surfaces which are constructed by glueing together finitely many unit squares. By varying the complex structure of these squares one obtains easily accessible examples of Teichmüller curves in the moduli space of Riemann surfaces.Different Teichmüller curves can be distinguished by several invariants, which are explicitly computed. The results are then compared to a p-adic analogue where Riemann surfaces are replaced by Mumford curves.
Fysieke beschrijving:1 electronic resource (VI, 74 p. p.)
ISBN:KSP/1000015949
9783866444829
Toegang:Open Access