Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting
The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate...
Сохранить в:
Главный автор: | Wei-Chiang Hong (Ed.) (auth) |
---|---|
Формат: | Электронный ресурс Глава книги |
Язык: | английский |
Опубликовано: |
MDPI - Multidisciplinary Digital Publishing Institute
2018
|
Предметы: | |
Online-ссылка: | DOAB: download the publication DOAB: description of the publication |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting
по: Wei-Chiang Hong (Ed.)
Опубликовано: (2018) -
Hybrid Advanced Techniques for Forecasting in Energy Sector
по: Wei-Chiang Hong (Ed.)
Опубликовано: (2018) -
Short-Term Load Forecasting by Artificial Intelligent Technologies
по: Wei-Chiang Hong (Ed.)
Опубликовано: (2019) -
Intelligent Optimization Modelling in Energy Forecasting
по: Hong, Wei-Chiang
Опубликовано: (2020) -
Statistical Analysis and Stochastic Modelling of Hydrological Extremes
по: Tabari, Hossein
Опубликовано: (2019)