Learning to Understand Remote Sensing Images

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remot...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Qi (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
CNN
UAV
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_51489
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03897-699-8 
020 |a 9783038976981 
020 |a 9783038976998 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-699-8  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Wang, Qi  |4 auth 
245 1 0 |a Learning to Understand Remote Sensing Images 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (376 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a metadata 
653 |a image classification 
653 |a sensitivity analysis 
653 |a ROI detection 
653 |a residual learning 
653 |a image alignment 
653 |a adaptive convolutional kernels 
653 |a Hough transform 
653 |a class imbalance 
653 |a land surface temperature 
653 |a inundation mapping 
653 |a multiscale representation 
653 |a object-based 
653 |a convolutional neural networks 
653 |a scene classification 
653 |a morphological profiles 
653 |a hyperedge weight estimation 
653 |a hyperparameter sparse representation 
653 |a semantic segmentation 
653 |a vehicle classification 
653 |a flood 
653 |a Landsat imagery 
653 |a target detection 
653 |a multi-sensor 
653 |a building damage detection 
653 |a optimized kernel minimum noise fraction (OKMNF) 
653 |a sea-land segmentation 
653 |a nonlinear classification 
653 |a land use 
653 |a SAR imagery 
653 |a anti-noise transfer network 
653 |a sub-pixel change detection 
653 |a Radon transform 
653 |a segmentation 
653 |a remote sensing image retrieval 
653 |a TensorFlow 
653 |a convolutional neural network 
653 |a particle swarm optimization 
653 |a optical sensors 
653 |a machine learning 
653 |a mixed pixel 
653 |a optical remotely sensed images 
653 |a object-based image analysis 
653 |a very high resolution images 
653 |a single stream optimization 
653 |a ship detection 
653 |a ice concentration 
653 |a online learning 
653 |a manifold ranking 
653 |a dictionary learning 
653 |a urban surface water extraction 
653 |a saliency detection 
653 |a spatial attraction model (SAM) 
653 |a quality assessment 
653 |a Fuzzy-GA decision making system 
653 |a land cover change 
653 |a multi-view canonical correlation analysis ensemble 
653 |a land cover 
653 |a semantic labeling 
653 |a sparse representation 
653 |a dimensionality expansion 
653 |a speckle filters 
653 |a hyperspectral imagery 
653 |a fully convolutional network 
653 |a infrared image 
653 |a Siamese neural network 
653 |a Random Forests (RF) 
653 |a feature matching 
653 |a color matching 
653 |a geostationary satellite remote sensing image 
653 |a change feature analysis 
653 |a road detection 
653 |a deep learning 
653 |a aerial images 
653 |a image segmentation 
653 |a aerial image 
653 |a multi-sensor image matching 
653 |a HJ-1A/B CCD 
653 |a endmember extraction 
653 |a high resolution 
653 |a multi-scale clustering 
653 |a heterogeneous domain adaptation 
653 |a hard classification 
653 |a regional land cover 
653 |a hypergraph learning 
653 |a automatic cluster number determination 
653 |a dilated convolution 
653 |a MSER 
653 |a semi-supervised learning 
653 |a gate 
653 |a Synthetic Aperture Radar (SAR) 
653 |a downscaling 
653 |a conditional random fields 
653 |a urban heat island 
653 |a hyperspectral image 
653 |a remote sensing image correction 
653 |a skip connection 
653 |a ISPRS 
653 |a spatial distribution 
653 |a geo-referencing 
653 |a Support Vector Machine (SVM) 
653 |a very high resolution (VHR) satellite image 
653 |a classification 
653 |a ensemble learning 
653 |a synthetic aperture radar 
653 |a conservation 
653 |a convolutional neural network (CNN) 
653 |a THEOS 
653 |a visible light and infrared integrated camera 
653 |a vehicle localization 
653 |a structured sparsity 
653 |a texture analysis 
653 |a DSFATN 
653 |a CNN 
653 |a image registration 
653 |a UAV 
653 |a unsupervised classification 
653 |a SVMs 
653 |a SAR image 
653 |a fuzzy neural network 
653 |a dimensionality reduction 
653 |a GeoEye-1 
653 |a feature extraction 
653 |a sub-pixel 
653 |a energy distribution optimizing 
653 |a saliency analysis 
653 |a deep convolutional neural networks 
653 |a sparse and low-rank graph 
653 |a hyperspectral remote sensing 
653 |a tensor low-rank approximation 
653 |a optimal transport 
653 |a SELF 
653 |a spatiotemporal context learning 
653 |a Modest AdaBoost 
653 |a topic modelling 
653 |a multi-seasonal 
653 |a Segment-Tree Filtering 
653 |a locality information 
653 |a GF-4 PMS 
653 |a image fusion 
653 |a wavelet transform 
653 |a hashing 
653 |a machine learning techniques 
653 |a satellite images 
653 |a climate change 
653 |a road segmentation 
653 |a remote sensing 
653 |a tensor sparse decomposition 
653 |a Convolutional Neural Network (CNN) 
653 |a multi-task learning 
653 |a deep salient feature 
653 |a speckle 
653 |a canonical correlation weighted voting 
653 |a fully convolutional network (FCN) 
653 |a despeckling 
653 |a multispectral imagery 
653 |a ratio images 
653 |a linear spectral unmixing 
653 |a hyperspectral image classification 
653 |a multispectral images 
653 |a high resolution image 
653 |a multi-objective 
653 |a convolution neural network 
653 |a transfer learning 
653 |a 1-dimensional (1-D) 
653 |a threshold stability 
653 |a Landsat 
653 |a kernel method 
653 |a phase congruency 
653 |a subpixel mapping (SPM) 
653 |a tensor 
653 |a MODIS 
653 |a GSHHG database 
653 |a compressive sensing 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1632  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/51489  |7 0  |z DOAB: description of the publication