Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing
As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural netw...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2019
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing. |
---|---|
Physical Description: | 1 electronic resource (438 p.) |
ISBN: | books978-3-03921-216-3 9783039212156 9783039212163 |
Access: | Open Access |