Machine Learning With Radiation Oncology Big Data

Radiation oncology is uniquely positioned to harness the power of big data as vast amounts of data are generated at an unprecedented pace for individual patients in imaging studies and radiation treatments worldwide. The big data encountered in the radiotherapy clinic may include patient demographic...

Full description

Saved in:
Bibliographic Details
Main Author: Lei Xing (auth)
Other Authors: Issam El Naqa (auth), Jun Deng (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2019
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_52519
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a 978-2-88945-730-4 
020 |a 9782889457304 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88945-730-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Lei Xing  |4 auth 
700 1 |a Issam El Naqa  |4 auth 
700 1 |a Jun Deng  |4 auth 
245 1 0 |a Machine Learning With Radiation Oncology Big Data 
260 |b Frontiers Media SA  |c 2019 
300 |a 1 electronic resource (146 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Radiation oncology is uniquely positioned to harness the power of big data as vast amounts of data are generated at an unprecedented pace for individual patients in imaging studies and radiation treatments worldwide. The big data encountered in the radiotherapy clinic may include patient demographics stored in the electronic medical record (EMR) systems, plan settings and dose volumetric information of the tumors and normal tissues generated by treatment planning systems (TPS), anatomical and functional information from diagnostic and therapeutic imaging modalities (e.g., CT, PET, MRI and kVCBCT) stored in picture archiving and communication systems (PACS), as well as the genomics, proteomics and metabolomics information derived from blood and tissue specimens. Yet, the great potential of big data in radiation oncology has not been fully exploited for the benefits of cancer patients due to a variety of technical hurdles and hardware limitations. With recent development in computer technology, there have been increasing and promising applications of machine learning algorithms involving the big data in radiation oncology. This research topic is intended to present novel technological breakthroughs and state-of-the-art developments in machine learning and data mining in radiation oncology in recent years. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a deep learning 
653 |a precision medicine 
653 |a Radiation Oncology 
653 |a big data 
653 |a machine learning 
653 |a artificial intelligence 
653 |a personalized medicine 
856 4 0 |a www.oapen.org  |u https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/52519  |7 0  |z DOAB: description of the publication