MaxEnt 2019-Proceedings, 2019, MaxEnt 2019The 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering

This Proceedings book presents papers from the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2019. The workshop took place at the Max Planck Institute for Plasma Physics in Garching near Munich, Germany, from 30 June to 5 July 2019,...

Full description

Saved in:
Bibliographic Details
Main Author: Von Toussaint, Udo (auth)
Other Authors: Preuss, Roland (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_52908
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-477-1 
020 |a 9783039284771 
020 |a 9783039284764 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-477-1  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Von Toussaint, Udo  |4 auth 
700 1 |a Preuss, Roland  |4 auth 
245 1 0 |a MaxEnt 2019-Proceedings, 2019, MaxEnt 2019The 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (312 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Proceedings book presents papers from the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2019. The workshop took place at the Max Planck Institute for Plasma Physics in Garching near Munich, Germany, from 30 June to 5 July 2019, and invited contributions on all aspects of probabilistic inference, including novel techniques, applications, and work that sheds new light on the foundations of inference. Addressed are inverse and uncertainty quantification (UQ) and problems arising from a large variety of applications, such as earth science, astrophysics, material and plasma science, imaging in geophysics and medicine, nondestructive testing, density estimation, remote sensing, Gaussian process (GP) regression, optimal experimental design, data assimilation, and data mining. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a uncertainty quantification 
653 |a orthodontics 
653 |a evidence 
653 |a global statistical regularization 
653 |a MCMC 
653 |a field reconstruction 
653 |a meshless methods 
653 |a annealed importance sampling 
653 |a cervical vertebra maturation 
653 |a Bayesian evidence 
653 |a spectral expansion 
653 |a non-intrusive 
653 |a model comparison 
653 |a plasma-wall interactions 
653 |a nested sampling 
653 |a Deep Learning (DL) 
653 |a classification 
653 |a stochastic gradients 
653 |a Bayesian Maximum a Posteriori approach 
653 |a Convolutional Neural Network (CNN) 
653 |a impedance cardiography 
653 |a vowel 
653 |a SGHMC 
653 |a Gaussian process regression 
653 |a precise hypotheses 
653 |a formant 
653 |a Bayesian analysis 
653 |a thermodynamic Integration 
653 |a model averaging 
653 |a probability theory 
653 |a acoustic phonetics 
653 |a UAP 
653 |a entropy prior probability 
653 |a source localization 
653 |a UAV 
653 |a source-filter theory 
653 |a SPECT 
653 |a multi fidelity 
653 |a Artificial Intelligence (AI) 
653 |a Monte Carlo 
653 |a Tic-Tac 
653 |a pragmatic hypotheses 
653 |a cluster analysis 
653 |a aortic dissection 
653 |a physics-informed methods 
653 |a UFO 
653 |a HMC 
653 |a steady-state 
653 |a mean shift method 
653 |a Bayes 
653 |a Nimitz 
653 |a image reconstruction 
653 |a machine learning 
653 |a local statistical regularization 
653 |a marginal likelihood 
653 |a detrending 
653 |a Gaussian processes 
653 |a kernel methods 
653 |a partial differential equations 
653 |a hypothesis tests 
653 |a PET 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2119  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/52908  |7 0  |z DOAB: description of the publication