Metal Plasticity and Fatigue at High Temperature

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount-more or less pronounced-of plastic deformation, often accompanied...

Full description

Saved in:
Bibliographic Details
Main Author: Srnec Novak, Jelena (auth)
Other Authors: Moro, Luciano (auth), Benasciutti, Denis (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_53250
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-771-0 
020 |a 9783039287703 
020 |a 9783039287710 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-771-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Srnec Novak, Jelena  |4 auth 
700 1 |a Moro, Luciano  |4 auth 
700 1 |a Benasciutti, Denis  |4 auth 
245 1 0 |a Metal Plasticity and Fatigue at High Temperature 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (220 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount-more or less pronounced-of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a aluminum cast 
653 |a partial constraint 
653 |a n/a 
653 |a fatigue criterion 
653 |a thermo-mechanical fatigue 
653 |a stress relaxation aging behavior 
653 |a stainless steel 
653 |a constitutive models 
653 |a environmentally-assisted cracking 
653 |a initial stress levels 
653 |a slip system-based shear stresses 
653 |a thermomechanical fatigue 
653 |a activation volume 
653 |a engineering design 
653 |a pore distribution 
653 |a experimental set-ups 
653 |a tensile tests 
653 |a elevated temperature 
653 |a creep 
653 |a economy 
653 |a LCF 
653 |a fatigue strength 
653 |a hardening/softening 
653 |a hardness 
653 |a pore accumulation 
653 |a defects 
653 |a kinematic model 
653 |a Sanicro 25 
653 |a probabilistic design 
653 |a AA7150-T7751 
653 |a strain rate 
653 |a crack growth models 
653 |a bcc 
653 |a probabilistic Schmid factors 
653 |a isotropic model 
653 |a crack-tip cyclic plasticity 
653 |a anisotropy 
653 |a creep fatigue 
653 |a X-ray micro computer tomography 
653 |a temperature 
653 |a transient effects 
653 |a aluminum-silicon cylinder head 
653 |a spheroidal cast iron 
653 |a Probabilistic modeling 
653 |a pre-strain 
653 |a crack-tip blunting and sharpening 
653 |a high temperature steels 
653 |a lost foam 
653 |a thermal-mechanical fatigue 
653 |a cyclic plasticity 
653 |a flow stress 
653 |a Ni-base superalloy 
653 |a pure fatigue 
653 |a René80 
653 |a polycrystalline FEA 
653 |a constitutive modelling 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2284  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53250  |7 0  |z DOAB: description of the publication