Microfluidics for Cells and Other Organisms

Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to stu...

Full description

Saved in:
Bibliographic Details
Main Author: van Noort, Danny (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_53423
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03921-563-8 
020 |a 9783039215638 
020 |a 9783039215621 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03921-563-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a van Noort, Danny  |4 auth 
245 1 0 |a Microfluidics for Cells and Other Organisms 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (200 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to study cell-cell, cell-matrix or cell-surface interactions. Cells can be either single cells, 3D cell cultures or co-cultures. Other organisms could include bacteria, zebra fish embryo, C. elegans, to name a few. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a n/a 
653 |a screening 
653 |a microfluidic device 
653 |a cell homogenous dispersion structure 
653 |a RNA 
653 |a biomedical engineering 
653 |a neural networks 
653 |a single-cell mechanics 
653 |a on-chip cell incubator 
653 |a cell growth 
653 |a embryogenesis 
653 |a cancer stem cell 
653 |a intracellular proteins 
653 |a simultaneous multiple chamber observation 
653 |a instrumentation 
653 |a fnRBC 
653 |a cancer metastasis 
653 |a Wheatstone bridge 
653 |a capillary 
653 |a single-cell manipulation 
653 |a adherent cells 
653 |a nucleic acid 
653 |a micropipette aspiration 
653 |a sample preparation 
653 |a unsupervised learning 
653 |a cell motility 
653 |a capture efficiency 
653 |a bacterial concentration 
653 |a cbNIPD 
653 |a microfabrication 
653 |a drug resistance 
653 |a variational inference 
653 |a microfluidics 
653 |a periodic hydrostatic pressure 
653 |a paracrine signaling 
653 |a periodic pressure 
653 |a capacitively coupled contactless conductivity detection (C4D) 
653 |a bioMEMS 
653 |a microfluidic flow cytometry 
653 |a particle/cell imaging 
653 |a co-culture 
653 |a cells-in-gels-in-paper 
653 |a laminar flows 
653 |a E. coli 
653 |a printed-circuit-board (PCB) 
653 |a pneumatic microvalve 
653 |a time-lapse observation 
653 |a nanostructure 
653 |a 3D particle focusing 
653 |a target cell-specific binding molecules 
653 |a absolute quantification 
653 |a DNA 
653 |a zebrafish embryo 
653 |a microscopy 
653 |a 3D printing 
653 |a 3D flow focusing 
653 |a single-cell analysis 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1740  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53423  |7 0  |z DOAB: description of the publication