Modularity in motor control: from muscle synergies to cognitive action representation

Mastering a rich repertoire of motor behaviors, as humans and other animals do, is a surprising and still poorly understood outcome of evolution, development, and learning. Many degrees-of-freedom, non-linear dynamics, and sensory delays provide formidable challenges for controlling even simple acti...

Full description

Saved in:
Bibliographic Details
Main Author: Tamar Flash (auth)
Other Authors: Andrea d'Avella (auth), Thomas Schack (auth), Yuri P. Ivanenko (auth), Martin Giese (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_53806
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88919-805-4 
020 |a 9782889198054 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-805-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAN  |2 bicssc 
100 1 |a Tamar Flash  |4 auth 
700 1 |a Andrea d'Avella  |4 auth 
700 1 |a Thomas Schack  |4 auth 
700 1 |a Yuri P. Ivanenko  |4 auth 
700 1 |a Martin Giese  |4 auth 
245 1 0 |a Modularity in motor control: from muscle synergies to cognitive action representation 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (792 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Mastering a rich repertoire of motor behaviors, as humans and other animals do, is a surprising and still poorly understood outcome of evolution, development, and learning. Many degrees-of-freedom, non-linear dynamics, and sensory delays provide formidable challenges for controlling even simple actions. Modularity as a functional element, both structural and computational, of a control architecture might be the key organizational principle that the central nervous system employs for achieving versatility and adaptability in motor control. Recent investigations of muscle synergies, motor primitives, compositionality, basic action concepts, and related work in machine learning have contributed to advance, at different levels, our understanding of the modular architecture underlying rich motor behaviors. However, the existence and nature of the modules in the control architecture is far from settled. For instance, regularity and low-dimensionality in the motor output are often taken as an indication of modularity but could they simply be a byproduct of optimization and task constraints? Moreover, what are the relationships between modules at different levels, such as muscle synergies, kinematic invariants, and basic action concepts? One important reason for the new interest in understanding modularity in motor control from different viewpoints is the impressive development in cognitive robotics. In comparison to animals and humans, the motor skills of today's best robots are limited and inflexible. However, robot technology is maturing to the point at which it can start approximating a reasonable spectrum of isolated perceptual, cognitive, and motor capabilities. These advances allow researchers to explore how these motor, sensory and cognitive functions might be integrated into meaningful architectures and to test their functional limits. Such systems provide a new test bed to explore different concepts of modularity and to address the interaction between motor and cognitive processes experimentally. Thus, the goal of this Research Topic is to review, compare, and debate theoretical and experimental investigations of the modular organization of the motor control system at different levels. By bringing together researchers seeking to understand the building blocks for coordinating many muscles, for planning endpoint and joint trajectories, and for representing motor and behavioral actions in memory we aim at promoting new interactions between often disconnected research areas and approaches and at providing a broad perspective on the idea of modularity in motor control. We welcome original research, methodological, theoretical, review, and perspective contributions from behavioral, system, and computational motor neuroscience research, cognitive psychology, and cognitive robotics. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Neurosciences  |2 bicssc 
653 |a action representation 
653 |a muscle synergies 
653 |a Motor Primitives 
653 |a motor learning 
653 |a compositionality 
653 |a neural control of movement 
653 |a Intermittent control 
653 |a Kinematic invariants 
653 |a Control architectures 
653 |a Robotics 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/875/modularity-in-motor-control-from-muscle-synergies-to-cognitive-action-representation  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/53806  |7 0  |z DOAB: description of the publication