Nanoelectronic Materials, Devices and Modeling

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The...

Full description

Saved in:
Bibliographic Details
Main Author: Li, Qiliang (auth)
Other Authors: Zhu, Hao (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
n/a
UAV
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_54256
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03921-226-2 
020 |a 9783039212255 
020 |a 9783039212262 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03921-226-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Li, Qiliang  |4 auth 
700 1 |a Zhu, Hao  |4 auth 
245 1 0 |a Nanoelectronic Materials, Devices and Modeling 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (242 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a quantum mechanical 
653 |a n/a 
653 |a neuromorphic computation 
653 |a off-current (Ioff) 
653 |a double-gate tunnel field-effect-transistor 
653 |a topological insulator 
653 |a back current blocking layer (BCBL) 
653 |a CMOS power amplifier IC 
653 |a information integration 
653 |a distributed Bragg 
653 |a spike-timing-dependent plasticity 
653 |a electron affinity 
653 |a enhancement-mode 
653 |a current collapse 
653 |a gallium nitride (GaN) 
653 |a band-to-band tunneling 
653 |a vertical field-effect transistor (VFET) 
653 |a ionic liquid 
653 |a luminescent centres 
653 |a thermal coupling 
653 |a vision localization 
653 |a PC1D 
653 |a UAV 
653 |a ZnO/Si 
653 |a dual-switching transistor 
653 |a memristor 
653 |a field-effect transistor 
653 |a higher order synchronization 
653 |a shallow trench isolation (STI) 
653 |a memristive device 
653 |a on-current (Ion) 
653 |a low voltage 
653 |a reflection transmision method 
653 |a dielectric layer 
653 |a source/drain (S/D) 
653 |a high efficiency 
653 |a nanostructure synthesis 
653 |a InAlN/GaN heterostructure 
653 |a supercapacitor 
653 |a high-electron mobility transistor (HEMTs) 
653 |a heterojunction 
653 |a p-GaN 
653 |a recessed channel array transistor (RCAT) 
653 |a gate field effect 
653 |a charge injection 
653 |a saddle FinFET (S-FinFET) 
653 |a L-shaped tunnel field-effect-transistor 
653 |a conductivity 
653 |a energy storage 
653 |a hierarchical 
653 |a PECVD 
653 |a sample grating 
653 |a MISHEMT 
653 |a bistability 
653 |a threshold voltage (VTH) 
653 |a bandgap tuning 
653 |a oscillatory neural networks 
653 |a UV irradiation 
653 |a Mott transition 
653 |a third harmonic tuning 
653 |a topological magnetoelectric effect 
653 |a cross-gain modulation 
653 |a 2D material 
653 |a solar cells 
653 |a silicon on insulator (SOI) 
653 |a Green's function 
653 |a optoelectronic devices 
653 |a semiconductor optical amplifier 
653 |a ZnO films 
653 |a graphene 
653 |a AlGaN/GaN 
653 |a polarization effect 
653 |a two-photon process 
653 |a conductive atomic force microscopy (cAFM) 
653 |a 2DEG density 
653 |a vanadium dioxide 
653 |a interface traps 
653 |a potential drop width (PDW) 
653 |a pattern recognition 
653 |a drain-induced barrier lowering (DIBL) 
653 |a atomic layer deposition (ALD) 
653 |a normally off power devices 
653 |a gate-induced drain leakage (GIDL) 
653 |a insulator-metal transition (IMT) 
653 |a zinc oxide 
653 |a synaptic device 
653 |a subthreshold slope (SS) 
653 |a landing 
653 |a silicon 
653 |a corner-effect 
653 |a conditioned reflex 
653 |a quantum dot 
653 |a gallium nitride 
653 |a bismuth ions 
653 |a conduction band offset 
653 |a variational form 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1423  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/54256  |7 0  |z DOAB: description of the publication