Neuronal mechanisms of epileptogenesis

Several types of brain injuries are causes of acquired temporal lobe epilepsy (TLE). The seizure-free "latent period" that often follows the brain injury is of unknown mechanistic significance but is commonly considered as the "epileptogenic" period characterized by gradual patho...

Full description

Saved in:
Bibliographic Details
Main Author: Roberto Di Maio (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2015
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_54517
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2015 xx |||||o ||| 0|eng d
020 |a 978-2-88919-382-0 
020 |a 9782889193820 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-382-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAN  |2 bicssc 
100 1 |a Roberto Di Maio  |4 auth 
245 1 0 |a Neuronal mechanisms of epileptogenesis 
260 |b Frontiers Media SA  |c 2015 
300 |a 1 electronic resource (223 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Several types of brain injuries are causes of acquired temporal lobe epilepsy (TLE). The seizure-free "latent period" that often follows the brain injury is of unknown mechanistic significance but is commonly considered as the "epileptogenic" period characterized by gradual pathogenic processes leading to the onset of clinically detectable epilepsy. Acute convulsive status epilepticus (SE) is often associated with an adverse developmental outcome characterized by learning disabilities related to the cumulative effects of seizures and development of TLE. The symptomatic manifestations of TLE appear only after a widespread irreversible damage of entorhinal cortex, and hippocampus, the brain area most affected by this disease. These pathological features of TLE reduce the possibility of successful therapeutic approaches, often rendering the disease refractory. The difficult clinical management of chronic TLE and the limited success rate of surgical approaches, increase the incapacitating nature of this specific epileptic disorder. Prevention of TLE with an appropriate intervention after a known inciting event (in the case of acquired epilepsy) might represent the most ambitious goal in the clinical treatment of this epileptic disorder, but has been largely unsuccessful to this point. Clinical trials aimed at prevention of chronic epilepsy have often produced negative, disappointing results. However, in most cases, these studies ultimately evaluated the downstream clinical manifestations, failing to monitor early, specific molecular epileptogenic events. Therefore, elucidation of the underlying mechanisms of epileptogenesis, and their time course(s) are essential. The primary purpose of this topic is to collect scientific contributions providing novel insights in the cellular and molecular mechanisms of epileptogenesis as potential targets for innovative therapeutic approaches aimed at preventing the chronic epileptic disorder. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Neurosciences  |2 bicssc 
653 |a Epileptogenesis 
653 |a TLE prevention 
653 |a Epilepsy 
653 |a Hippocampal damage 
653 |a Neuronal epileptic damage 
653 |a Temporal Lobe Epilepsy (TLE) 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/1097/neuronal-mechanisms-of-epileptogenesis  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/54517  |7 0  |z DOAB: description of the publication