Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture f...

Full description

Saved in:
Bibliographic Details
Main Author: Huber, Marco (auth)
Format: Electronic Book Chapter
Language:English
Published: KIT Scientific Publishing 2015
Series:Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_54758
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2015 xx |||||o ||| 0|eng d
020 |a KSP/1000045491 
020 |a 9783731503385 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000045491  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Huber, Marco  |4 auth 
245 1 0 |a Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications 
260 |b KIT Scientific Publishing  |c 2015 
300 |a 1 electronic resource (V, 270 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
653 |a Zustandsschätzung 
653 |a GaußprozesseBayesian statistics 
653 |a Kalman filter 
653 |a Gaussian processes 
653 |a Kalman-Filter 
653 |a state estimation 
653 |a filtering 
653 |a Bayes'sche Statistik 
856 4 0 |a www.oapen.org  |u https://www.ksp.kit.edu/9783731503385  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/54758  |7 0  |z DOAB: description of the publication