Nonlinear state and parameter estimation of spatially distributed systems

In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for id...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Sawo, Felix (auth)
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
भाषा:अंग्रेज़ी
प्रकाशित: KIT Scientific Publishing 2009
श्रृंखला:Karlsruhe Series on Intelligent Sensor-Actuator-Systems, Universität Karlsruhe / Intelligent Sensor-Actuator-Systems Laboratory
विषय:
ऑनलाइन पहुंच:DOAB: download the publication
DOAB: description of the publication
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विवरण
सारांश:In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.
भौतिक वर्णन:1 electronic resource (XI, 153 p. p.)
आईएसबीएन:KSP/1000011485
9783866443709
अभिगमन:Open Access