Numerical Analysis or Numerical Method in Symmetry

This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exqui...

Full description

Saved in:
Bibliographic Details
Main Author: Cesarano, Clemente (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_54913
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-373-6 
020 |a 9783039283736 
020 |a 9783039283729 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-373-6  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Cesarano, Clemente  |4 auth 
245 1 0 |a Numerical Analysis or Numerical Method in Symmetry 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (194 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a risk assessment 
653 |a complex Lagrangian 
653 |a effective order 
653 |a logarithmic singularities 
653 |a Swift-Hohenberg type of equation 
653 |a Cauchy singularity 
653 |a differential equations 
653 |a unitary extension principle 
653 |a oscillatory solutions 
653 |a coupling impedance 
653 |a Fredholm integral equations 
653 |a dual integral equations 
653 |a composition properties 
653 |a delay differential equations 
653 |a chemical reaction 
653 |a Noether symmetries 
653 |a symplectic Runge-Kutta methods 
653 |a order conditions 
653 |a non-homogeneous 
653 |a wavelets 
653 |a multiresolution analysis 
653 |a narrow band domain 
653 |a pseudo-Chebyshev polynomials 
653 |a highly oscillatory integrals 
653 |a tight framelets 
653 |a Chebyshev polynomials 
653 |a nonoscillatory solutions 
653 |a ignition hazard 
653 |a quad-colored trees 
653 |a general solution 
653 |a operator splitting method 
653 |a fourth-order ODEs 
653 |a offshore plant 
653 |a special function 
653 |a second-order 
653 |a surfaces 
653 |a numerical analysis 
653 |a effective field strength 
653 |a closest point method 
653 |a oblique extension principle 
653 |a heat generation 
653 |a B-splines 
653 |a Runge-Kutta type methods 
653 |a orthogonality properties 
653 |a Frobenius method 
653 |a hamiltonian systems 
653 |a B-series 
653 |a k-hypergeometric series 
653 |a particle accelerator 
653 |a first integrals 
653 |a partitioned runge-kutta methods 
653 |a Clenshaw-Curtis quadrature 
653 |a recurrence relations 
653 |a thin needle 
653 |a nanofluid 
653 |a Hamiltonian system 
653 |a k-hypergeometric differential equations 
653 |a steepest descent method 
653 |a symplecticity 
653 |a fourth-order 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2039  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/54913  |7 0  |z DOAB: description of the publication