On Length Spectra of Lattices

The aim of this work is to study Schmutz Schaller's conjecture that in dimensions 2 to 8 the lattices with the best sphere packings have maximal lengths. This means that the distinct norms which occur in these lattices are greater than those of any other lattice in the same dimension with the s...

Full description

Saved in:
Bibliographic Details
Main Author: Willging, Thomas (auth)
Format: Electronic Book Chapter
Language:English
Published: KIT Scientific Publishing 2010
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_55204
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2010 xx |||||o ||| 0|eng d
020 |a KSP/1000020381 
020 |a 9783866445840 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000020381  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Willging, Thomas  |4 auth 
245 1 0 |a On Length Spectra of Lattices 
260 |b KIT Scientific Publishing  |c 2010 
300 |a 1 electronic resource (55 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The aim of this work is to study Schmutz Schaller's conjecture that in dimensions 2 to 8 the lattices with the best sphere packings have maximal lengths. This means that the distinct norms which occur in these lattices are greater than those of any other lattice in the same dimension with the same covolume. Although the statement holds asymptotically we explicitly present a counter-example. However, it seems that there is nothing but this exception. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a Lattices 
653 |a Geodesics 
653 |a Quadratic Forms 
856 4 0 |a www.oapen.org  |u https://www.ksp.kit.edu/9783866445840  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/55204  |7 0  |z DOAB: description of the publication