Passive Micromixers
Micro-total analysis systems and lab-on-a-chip platforms are widely used for sample preparation and analysis, drug delivery, and biological and chemical syntheses. A micromixer is an important component in these applications. Rapid and efficient mixing is a challenging task in the design and develop...
Saved in:
Main Author: | |
---|---|
Other Authors: | , |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2018
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_55762 | ||
005 | 20210211 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210211s2018 xx |||||o ||| 0|eng d | ||
020 | |a 9783038970088 | ||
020 | |a 9783038970071 | ||
040 | |a oapen |c oapen | ||
041 | 0 | |a eng | |
042 | |a dc | ||
100 | 1 | |a Arshad Afzal (Ed.) |4 auth | |
700 | 1 | |a Kwang-Yong Kim (Ed.) |4 auth | |
700 | 1 | |a Mubashshir Ansari A. (Ed.) |4 auth | |
245 | 1 | 0 | |a Passive Micromixers |
260 | |b MDPI - Multidisciplinary Digital Publishing Institute |c 2018 | ||
300 | |a 1 electronic resource (VIII, 166 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Micro-total analysis systems and lab-on-a-chip platforms are widely used for sample preparation and analysis, drug delivery, and biological and chemical syntheses. A micromixer is an important component in these applications. Rapid and efficient mixing is a challenging task in the design and development of micromixers. The flow in micromixers is laminar, and, thus, the mixing is primarily dominated by diffusion. Recently, diverse techniques have been developed to promote mixing by enlarging the interfacial area between the fluids or by increasing the residential time of fluids in the micromixer. Based on their mixing mechanism, micromixers are classified into two types: active and passive. Passive micromixers are easy to fabricate and generally use geometry modification to cause chaotic advection or lamination to promote the mixing of the fluid samples, unlike active micromixers, which use moving parts or some external agitation/energy for the mixing. Many researchers have studied various geometries to design efficient passive micromixers. Recently, numerical optimization techniques based on computational fluid dynamic analysis have been proven to be efficient tools in the design of micromixers. The current Special Issue covers new mechanisms, design, numerical and/or experimental mixing analysis, and design optimization of various passive micromixers. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
653 | |a micromixer design | ||
653 | |a passive micromixer | ||
653 | |a design optimization | ||
653 | |a mixing mechanism | ||
653 | |a analysis of mixing | ||
856 | 4 | 0 | |a www.oapen.org |u http://www.mdpi.com/books/pdfview/book/678 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/55762 |7 0 |z DOAB: description of the publication |