Physiological and molecular ecology of aquatic cyanobacteria

The cyanobacteria inhabit every illuminated environment on Earth, from polar lakes to desert crusts and through their phototrophic metabolism play essential roles in global geochemical cycles. With the discovery of marine Synechococcus and Prochlorococcus almost 30 years ago, cyanobacteria have now...

Full description

Saved in:
Bibliographic Details
Main Author: George S Bullerjahn (auth)
Other Authors: Anton F Post (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2015
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_56237
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2015 xx |||||o ||| 0|eng d
020 |a 978-2-88919-318-9 
020 |a 9782889193189 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-318-9  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a George S Bullerjahn  |4 auth 
700 1 |a Anton F Post  |4 auth 
245 1 0 |a Physiological and molecular ecology of aquatic cyanobacteria 
260 |b Frontiers Media SA  |c 2015 
300 |a 1 electronic resource (127 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The cyanobacteria inhabit every illuminated environment on Earth, from polar lakes to desert crusts and through their phototrophic metabolism play essential roles in global geochemical cycles. With the discovery of marine Synechococcus and Prochlorococcus almost 30 years ago, cyanobacteria have now earned their place as dominant primary producers contributing over 25 percent of global photosynthesis. Their global abundance is now explained from the coexistence of ecotypes that occupy different niches along spatial and temporal gradients. New ecotypes of Synechococcus have been identified as abundant components of microbial communities in freshwater environments and marginal seas. Extensive comparative genomics of marine and freshwater picocyanobacteria have begun to unmask adaptations to light and nutrient (N, P, Fe) limitation that these diverse environments present. Novel types of cyanobacterial diazotrophy input new N and structure microbial communities in the open sea. Current challenges include the understanding of the interactions between marine cyanobacteria and other microbes in their immediate community. In contrast, mesotrophic and eutrophic environments such as the Laurentian Great Lakes have been increasingly affected by nuisance and toxic cyanobacterial blooms that have yielded severe declines in water quality. Factors promoting bloom formation and the functional roles of toxins are important issues being addressed today. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a Prochlorococcus 
653 |a Cyanobacteria 
653 |a Synechococcus 
653 |a HABs 
653 |a Nitrogen Fixation 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/497/physiological-and-molecular-ecology-of-aquatic-cyanobacteria  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/56237  |7 0  |z DOAB: description of the publication