Polymeric Systems as Antimicrobial or Antifouling Agents

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is kno...

Full description

Saved in:
Bibliographic Details
Main Author: Francolini, Iolanda (auth)
Other Authors: Piozzi, Antonella (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_56641
005 20210211
003 oapen
006 m o d
007 cr|mn|---annan
008 20210211s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-457-3 
020 |a 9783039284573 
020 |a 9783039284566 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-457-3  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Francolini, Iolanda  |4 auth 
700 1 |a Piozzi, Antonella  |4 auth 
245 1 0 |a Polymeric Systems as Antimicrobial or Antifouling Agents 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (400 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a imidization 
653 |a antifouling materials 
653 |a n/a 
653 |a UV-induced polymerization 
653 |a 2-hydroxyethyl methacrylate 
653 |a additive manufacturing 
653 |a antimicrobial resistance 
653 |a biofilm 
653 |a antibacterial peptides 
653 |a ocular infections 
653 |a food shelf-life 
653 |a hemolytic activity 
653 |a polyamide 11 
653 |a coatings from nanoparticles 
653 |a polymeric surfaces 
653 |a microbial biofilm 
653 |a ?-chymotrypsin 
653 |a antimicrobial properties 
653 |a linear low-density polyethylene 
653 |a drug delivery systems 
653 |a ESKAPE pathogens 
653 |a halictine 
653 |a composites 
653 |a foodborne pathogens 
653 |a layered double hydroxides 
653 |a cuprous oxide nanoparticles 
653 |a multifunctional hybrid systems 
653 |a microbicidal coatings 
653 |a adhesives 
653 |a acrylates 
653 |a quaternization 
653 |a polymeric biocide 
653 |a biocompatible polymer 
653 |a surface functionalization 
653 |a sol-gel preparation 
653 |a antifouling 
653 |a antimicrobial peptides 
653 |a polymerizable quaternary ammonium salts 
653 |a antibiofilm activity 
653 |a polymeric films 
653 |a antibacterial activity 
653 |a bionanocomposites 
653 |a cationic polymers 
653 |a Escherichia coli 
653 |a antibacterial 
653 |a biofilm methods 
653 |a drug delivery 
653 |a circular dichroism 
653 |a coatings wettability 
653 |a antimicrobial polymers 
653 |a fluorescence 
653 |a Staphylococcus aureus 
653 |a biofilm analysis 
653 |a polyethylene glycol 
653 |a copolymerization 
653 |a dynamic light scattering 
653 |a physiological salt 
653 |a copper paint 
653 |a medical device-related infections 
653 |a olive mill wastewater 
653 |a Acinetobacter baumannii 
653 |a anti-biofilm surface 
653 |a additives 
653 |a periodontitis 
653 |a periodontal biofilms 
653 |a antimicrobial peptide 
653 |a segmented polyurethanes 
653 |a plastic materials 
653 |a biocompatible systems 
653 |a bactericidal coatings 
653 |a bacteria viability 
653 |a wound dressings 
653 |a ordered mesoporous silica 
653 |a quaternary ammonium 
653 |a multidrug-resistant 
653 |a antimicrobial polymer 
653 |a biofilm devices 
653 |a biofilm on contact lenses 
653 |a water disinfection 
653 |a amorphous materials 
653 |a polymers 
653 |a infrared spectroscopy 
653 |a quaternary ammonium salts 
653 |a lipopeptides 
653 |a antibacterial properties 
653 |a thermal stability 
653 |a proteinase 
653 |a active packaging 
653 |a antibacterial polymers 
653 |a anti-biofilm surfaces 
653 |a 3D printing 
653 |a drug carrier 
653 |a persister cells 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2300  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/56641  |7 0  |z DOAB: description of the publication