Remote Sensing for Target Object Detection and Identification

Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amoun...

Full description

Saved in:
Bibliographic Details
Main Author: Ziemann, Amanda (auth)
Other Authors: Vivone, Gemine (auth), Addesso, Paolo (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
SAR
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_58169
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-333-0 
020 |a 9783039283330 
020 |a 9783039283323 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-333-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a RG  |2 bicssc 
100 1 |a Ziemann, Amanda  |4 auth 
700 1 |a Vivone, Gemine  |4 auth 
700 1 |a Addesso, Paolo  |4 auth 
245 1 0 |a Remote Sensing for Target Object Detection and Identification 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (336 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Geography  |2 bicssc 
653 |a satellite videos 
653 |a nonconvex tensor robust principle component analysis 
653 |a infrared 
653 |a phase unwrapping 
653 |a non-independent and identical distribution (non-i.i.d.) mixture of Gaussians 
653 |a dictionary construction 
653 |a Color Markov Chain 
653 |a convolutional neural networks 
653 |a ground-based detection 
653 |a hazard prevention 
653 |a ADMM 
653 |a observability 
653 |a pixel-tracking 
653 |a multi-scale pyramidal features 
653 |a thermal infrared target tracking 
653 |a visible 
653 |a component mixture model 
653 |a hyperspectral imagery 
653 |a flux density 
653 |a particle filter framework 
653 |a processor 
653 |a detecting distance 
653 |a rivers water-flow elevation estimation 
653 |a non-convex optimization 
653 |a convolutional neural networks (CNNs) 
653 |a infrared small-faint target detection 
653 |a target detection 
653 |a infrared imaging 
653 |a synthetic aperture radar (SAR) 
653 |a low-rank representation 
653 |a local prior analysis 
653 |a remote sensing images 
653 |a hardware architecture 
653 |a remote sensing image 
653 |a unsupervised saliency model 
653 |a variational Bayesian 
653 |a SAR 
653 |a hyperspectral 
653 |a anomaly detection 
653 |a infrared small target detection 
653 |a object detection 
653 |a partial sum of the tensor nuclear norm 
653 |a superpixel segmentation 
653 |a multi-model 
653 |a deep learning 
653 |a mask sparse representation 
653 |a oil tank detection 
653 |a tiny and dim target detection 
653 |a HSI reconstruction 
653 |a part-based 
653 |a semantic features 
653 |a region proposals 
653 |a unmanned aerial vehicle 
653 |a object matching 
653 |a hidden danger identification 
653 |a remote sensing imagery 
653 |a target identification 
653 |a Lp-norm constraint 
653 |a low rank sparse decomposition 
653 |a bottom-up and top-down 
653 |a contextual information 
653 |a multi-scale strategies 
653 |a sparse coding 
653 |a very-high-resolution (VHR) remote sensing imagery 
653 |a vehicle detection 
653 |a alternating direction method of multipliers 
653 |a adaptive weighting 
653 |a flood hazard 
653 |a tower failure 
653 |a earth entry vehicle 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2070  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/58169  |7 0  |z DOAB: description of the publication