Remote Sensing Technology Applications in Forestry and REDD+

Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent dev...

Full description

Saved in:
Bibliographic Details
Main Author: Vastaranta, Mikko (auth)
Other Authors: Calders, Kim (auth), Jonckheere, Inge (auth), Nightingale, Joanne (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_58179
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-471-9 
020 |a 9783039284702 
020 |a 9783039284719 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-471-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TQ  |2 bicssc 
100 1 |a Vastaranta, Mikko  |4 auth 
700 1 |a Calders, Kim  |4 auth 
700 1 |a Jonckheere, Inge  |4 auth 
700 1 |a Nightingale, Joanne  |4 auth 
245 1 0 |a Remote Sensing Technology Applications in Forestry and REDD+ 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (244 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Environmental science, engineering & technology  |2 bicssc 
653 |a spectral 
653 |a Cameroon 
653 |a quantitative structural model 
653 |a digital hemispherical photograph (DHP) 
653 |a environment effects 
653 |a human activity 
653 |a reference level 
653 |a terrestrial laser scanning 
653 |a topographic effects 
653 |a Guyana 
653 |a predictive mapping 
653 |a aboveground biomass estimation 
653 |a geographic information system 
653 |a Pinus massoniana 
653 |a 3D tree modelling 
653 |a ensemble model 
653 |a destructive sampling 
653 |a model comparison 
653 |a topography 
653 |a remote sensing 
653 |a forest growing stock volume (GSV) 
653 |a local tree allometry 
653 |a tree mapping 
653 |a gray level co-occurrence matrix (GLCM) 
653 |a deforestation 
653 |a REDD+ 
653 |a sentinel imagery 
653 |a geographically weighted regression 
653 |a aboveground biomass 
653 |a random forest 
653 |a random forest (RF) 
653 |a silviculture 
653 |a agriculture 
653 |a crown density 
653 |a hazard mapping 
653 |a model evaluation 
653 |a old-growth forest 
653 |a full polarimetric SAR 
653 |a subtropical forest 
653 |a forest canopy 
653 |a forest classification 
653 |a low-accuracy estimation 
653 |a texture 
653 |a LiDAR 
653 |a Landsat 
653 |a phenology 
653 |a airborne laser scanning 
653 |a tall trees 
653 |a machine learning 
653 |a forest baseline 
653 |a overstory trees 
653 |a support vector machine 
653 |a above-ground biomass 
653 |a multispectral satellite imagery 
653 |a crown delineation 
653 |a specific leaf area 
653 |a forest inventory 
653 |a canopy cover (CC) 
653 |a voxelization 
653 |a forestry 
653 |a leaf area 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2103  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/58179  |7 0  |z DOAB: description of the publication