The Role of MicroRNAs in Plants
Discovered in plants at the turn of the century, microRNAs (miRNAs) have been found to be fundamental to many aspects of plant biology. These small (20-24 nt) regulatory RNAs are derived via processing from longer imperfect double-stranded RNAs. They are then incorporated into silencing complexes, w...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2020
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_58591 | ||
005 | 20210212 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210212s2020 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-03928-731-4 | ||
020 | |a 9783039287307 | ||
020 | |a 9783039287314 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-03928-731-4 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PS |2 bicssc | |
100 | 1 | |a Millar, Anthony |4 auth | |
245 | 1 | 0 | |a The Role of MicroRNAs in Plants |
260 | |b MDPI - Multidisciplinary Digital Publishing Institute |c 2020 | ||
300 | |a 1 electronic resource (174 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Discovered in plants at the turn of the century, microRNAs (miRNAs) have been found to be fundamental to many aspects of plant biology. These small (20-24 nt) regulatory RNAs are derived via processing from longer imperfect double-stranded RNAs. They are then incorporated into silencing complexes, which they guide to (m)RNAs of high sequence complementarity, resulting in gene silencing outcomes, either via RNA degradation and/or translational inhibition. Some miRNAs are ancient, being present in all species of land plants and controlling fundamental processes such as phase change, organ polarity, flowering, and leaf and root development. However, there are many more miRNAs that are much less conserved and with less understood functions. This Special Issue contains seven research papers that span from understanding the function of a single miRNA family to examining how the miRNA profiles alter during abiotic stress or nutrient deficiency. The possibility of circular RNAs in plants acting as miRNA decoys to inhibit miRNA function is investigated, as was the hierarchical roles of miRNA biogenesis factors in the maintenance of phosphate homeostasis. Three reviews cover the potential of miRNAs for agronomic improvement of maize, the role of miRNA-triggered secondary small RNAs in plants, and the potential function of an ancient plant miRNA. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Biology, life sciences |2 bicssc | |
653 | |a microRNAs | ||
653 | |a abiotic stress | ||
653 | |a Arabidopsis thaliana | ||
653 | |a heat stress | ||
653 | |a photosynthesis | ||
653 | |a maize (Zea mays L.) | ||
653 | |a immunoprecipitation | ||
653 | |a tapetum | ||
653 | |a resurrection plants | ||
653 | |a plastocyanin | ||
653 | |a dehydration | ||
653 | |a Tripogon loliiformis | ||
653 | |a secondary siRNA | ||
653 | |a RT-qPCR | ||
653 | |a putrescine | ||
653 | |a DRB2 | ||
653 | |a phosphate (PO4) stress | ||
653 | |a argonaute | ||
653 | |a development | ||
653 | |a miR399-directed PHO2 expression regulation | ||
653 | |a circRNA | ||
653 | |a Solanum lycopersicum | ||
653 | |a copper deficiency | ||
653 | |a salt stress | ||
653 | |a DOUBLE-STRANDED RNA BINDING (DRB) proteins DRB1 | ||
653 | |a P5CS | ||
653 | |a proline | ||
653 | |a phasiRNA | ||
653 | |a drought stress | ||
653 | |a agronomic traits | ||
653 | |a Colorado potato beetle | ||
653 | |a Cu-microRNA | ||
653 | |a plant | ||
653 | |a miR171 | ||
653 | |a STTM | ||
653 | |a aleurone | ||
653 | |a PHOSPHATE2 (PHO2) | ||
653 | |a vegetative growth | ||
653 | |a nutrient availability | ||
653 | |a miRNAs | ||
653 | |a non-coding RNA | ||
653 | |a pollen | ||
653 | |a tomato | ||
653 | |a flowering | ||
653 | |a crop improvement | ||
653 | |a callose | ||
653 | |a miRNA target gene expression | ||
653 | |a circular RNAs | ||
653 | |a miRNA | ||
653 | |a programmed cell death | ||
653 | |a DRB4 | ||
653 | |a microRNA (miRNA) | ||
653 | |a target mimicry | ||
653 | |a MYB transcription factors | ||
653 | |a post-transcriptional gene silencing | ||
653 | |a desiccation | ||
653 | |a miR399 | ||
653 | |a miR159 | ||
653 | |a copper protein | ||
653 | |a drought | ||
653 | |a microRNAs (miRNAs) | ||
653 | |a microRNA | ||
653 | |a GAMYB | ||
653 | |a tasiRNA | ||
653 | |a phosphorous (P) | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/2324 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/58591 |7 0 |z DOAB: description of the publication |