Short-Term Load Forecasting by Artificial Intelligent Technologies
In last few decades, short-term load forecasting (STLF) has been one of the most important research issues for achieving higher efficiency and reliability in power system operation, to facilitate the minimization of its operation cost by providing accurate input to day-ahead scheduling, contingency...
Kaydedildi:
Yazar: | Wei-Chiang Hong (Ed.) (auth) |
---|---|
Diğer Yazarlar: | Guo-Feng Fan (Ed.) (auth), Ming-Wei Li (Ed.) (auth) |
Materyal Türü: | Elektronik Kitap Bölümü |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
MDPI - Multidisciplinary Digital Publishing Institute
2019
|
Konular: | |
Online Erişim: | DOAB: download the publication DOAB: description of the publication |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
Hybrid Advanced Techniques for Forecasting in Energy Sector
Yazar:: Wei-Chiang Hong (Ed.)
Baskı/Yayın Bilgisi: (2018) -
Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting
Yazar:: Wei-Chiang Hong (Ed.)
Baskı/Yayın Bilgisi: (2018) -
Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting
Yazar:: Wei-Chiang Hong (Ed.)
Baskı/Yayın Bilgisi: (2018) -
Short-Term Load Forecasting 2019
Baskı/Yayın Bilgisi: (2021) -
Intelligent Optimization Modelling in Energy Forecasting
Yazar:: Hong, Wei-Chiang
Baskı/Yayın Bilgisi: (2020)