Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures

This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional alg...

Full description

Saved in:
Bibliographic Details
Main Author: Cristea, Irina (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_60381
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-709-3 
020 |a 9783039287093 
020 |a 9783039287086 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-709-3  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Cristea, Irina  |4 auth 
245 1 0 |a Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (208 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a intuitionistic fuzzy soft strong hyper BCK-ideal 
653 |a time-varying artificial neuron 
653 |a clustering protocols 
653 |a 1-hypergroup 
653 |a fuzzy multi-Hv-ideal 
653 |a multisets 
653 |a q-rung picture fuzzy line graphs 
653 |a semi-symmetry 
653 |a rough set 
653 |a quasi-multiautomaton 
653 |a height 
653 |a transposition hypergroup 
653 |a Hv-ring 
653 |a m-polar fuzzy hypergraphs 
653 |a Hv-structures 
653 |a selection operation 
653 |a upper approximation 
653 |a invertible subhypergroup 
653 |a breakable semigroup 
653 |a intuitionistic fuzzy soft weak hyper BCK ideal 
653 |a functions on multiset 
653 |a submultiset 
653 |a m-polar fuzzy equivalence relation 
653 |a semihypergroup 
653 |a granular computing 
653 |a q-rung picture fuzzy graphs 
653 |a linear differential operator 
653 |a perfect edge regular 
653 |a Hv-ideal 
653 |a lower BCK-semilattice 
653 |a square q-rung picture fuzzy graphs 
653 |a minimal prime decomposition 
653 |a level hypergraphs 
653 |a hyperfield 
653 |a quasi-automaton 
653 |a hyperring 
653 |a semi-prime closure operation 
653 |a edge regular 
653 |a UWSN 
653 |a (hyper)homography 
653 |a relative annihilator 
653 |a hypergroup 
653 |a intuitionistic fuzzy soft s-weak hyper BCK-ideal 
653 |a fundamental equivalence relation 
653 |a intuitionistic fuzzy soft hyper BCK ideal 
653 |a hyperideal 
653 |a lower approximation 
653 |a multiset 
653 |a fundamental relation 
653 |a ego networks 
653 |a application 
653 |a minimal prime factor 
653 |a single-power cyclic hypergroup 
653 |a ordered group 
653 |a fuzzy multiset 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2344  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/60381  |7 0  |z DOAB: description of the publication