Symmetry with Operator Theory and Equations

A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found...

Full description

Saved in:
Bibliographic Details
Main Author: Argyros, Ioannis (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_60388
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03921-667-3 
020 |a 9783039216673 
020 |a 9783039216666 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03921-667-3  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Argyros, Ioannis  |4 auth 
245 1 0 |a Symmetry with Operator Theory and Equations 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (208 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a Lipschitz condition 
653 |a order of convergence 
653 |a Scalar equations 
653 |a local and semilocal convergence 
653 |a multiple roots 
653 |a Nondifferentiable operator 
653 |a optimal iterative methods 
653 |a Order of convergence 
653 |a convergence order 
653 |a fast algorithms 
653 |a iterative method 
653 |a computational convergence order 
653 |a generalized mixed equilibrium problem 
653 |a nonlinear equations 
653 |a systems of nonlinear equations 
653 |a Chebyshev's iterative method 
653 |a local convergence 
653 |a iterative methods 
653 |a divided difference 
653 |a Multiple roots 
653 |a semi-local convergence 
653 |a scalar equations 
653 |a left Bregman asymptotically nonexpansive mapping 
653 |a basin of attraction 
653 |a maximal monotone operator 
653 |a Newton-HSS method 
653 |a general means 
653 |a Steffensen's method 
653 |a derivative-free method 
653 |a simple roots 
653 |a fixed point problem 
653 |a split variational inclusion problem 
653 |a weighted-Newton method 
653 |a ball radius of convergence 
653 |a Traub-Steffensen method 
653 |a Newton's method 
653 |a fractional derivative 
653 |a Banach space 
653 |a multiple-root solvers 
653 |a uniformly convex and uniformly smooth Banach space 
653 |a Fréchet-derivative 
653 |a optimal convergence 
653 |a Optimal iterative methods 
653 |a basins of attraction 
653 |a nonlinear equation 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1729  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/60388  |7 0  |z DOAB: description of the publication