Titanium Dioxide Photocatalysis

Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splittin...

Full description

Saved in:
Bibliographic Details
Main Author: Naldoni, Alberto (auth)
Other Authors: Dal Santo, Vladimiro (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_60960
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2019 xx |||||o ||| 0|eng d
020 |a books978-3-03897-695-0 
020 |a 9783038976950 
020 |a 9783038976943 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03897-695-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PN  |2 bicssc 
100 1 |a Naldoni, Alberto  |4 auth 
700 1 |a Dal Santo, Vladimiro  |4 auth 
245 1 0 |a Titanium Dioxide Photocatalysis 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (208 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splitting), and in Carbon Capture and Utilization (CCU) processes by CO2 photoreduction. The eleven articles, among them three reviews, in this book cover recent results and research trends of various aspects of titanium dioxide photocatalysis, with the chief aim of improving the final efficiency of TiO2-based materials. Strategies include doping, metal co-catalyst deposition, and the realization of composites with plasmonic materials, other semiconductors, and graphene. Photocatalysts with high efficiency and selectivity can be also obtained by controlling the precise crystal shape (and homogeneous size) and the organization in superstructures from ultrathin films to hierarchical nanostructures. Finally, the theoretical modeling of TiO2 nanoparticles is discussed and highlighted. The range of topics addressed in this book will stimulate the reader's interest as well as provide a valuable source of information for researchers in academia and industry. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Chemistry  |2 bicssc 
653 |a UV-visible 
653 |a n/a 
653 |a oxidative reaction systems 
653 |a photodegradation 
653 |a nanospheres 
653 |a heterojunction 
653 |a Ag/AgCl@TiO2 fibers 
653 |a polymorphism 
653 |a XRD 
653 |a copper-modified titania 
653 |a ultrasonic vibration 
653 |a brookite 
653 |a TiO2 modification 
653 |a simulated Extended X-ray Adsorption Fine-Structure (EXAFS) 
653 |a nanorod spheres 
653 |a trapped electrons 
653 |a flame-spray pyrolysis 
653 |a titania/water interface 
653 |a microwave irradiation 
653 |a plasmonic photocatalyst 
653 |a graphene-TiO2 
653 |a photocatalytic hydrogen production 
653 |a microstreaming 
653 |a B3LYP 
653 |a HRTEM 
653 |a hardness 
653 |a printing and dyeing wastewater 
653 |a SCC-DFTB 
653 |a TiO2 
653 |a photoelectrochemistry 
653 |a titanium 
653 |a bulk defects 
653 |a methanol photo-steam reforming 
653 |a spray coating 
653 |a sol-gel 
653 |a FTIR 
653 |a S-doping 
653 |a photocatalysis 
653 |a sulfidation 
653 |a lattice defects 
653 |a polymorph 
653 |a anodization 
653 |a pine-cone TiO2 nanoclusters 
653 |a nanorod arrays 
653 |a formation mechanism 
653 |a Cu and Pt nanoparticles 
653 |a excitons 
653 |a TiO2 nanotubes 
653 |a adhesion 
653 |a trapping 
653 |a flexible substrates 
653 |a optical absorption 
653 |a large-sized films 
653 |a surface defects 
653 |a titanium dioxide 
653 |a accumulated electrons 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/1316  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/60960  |7 0  |z DOAB: description of the publication