Using Noise to Characterize Vision

Noise has been widely used to investigate the processing properties of various visual functions (e.g. detection, discrimination, attention, perceptual learning, averaging, crowding, face recognition), in various populations (e.g. older adults, amblyopes, migrainers, dyslexic children), using noise a...

Full description

Saved in:
Bibliographic Details
Main Author: Remy Allard (auth)
Other Authors: Jocelyn Faubert (auth), Denis G. Pelli (auth)
Format: Electronic Book Chapter
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_61795
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88919-753-8 
020 |a 9782889197538 
040 |a oapen  |c oapen 
024 7 |a 10.3389/978-2-88919-753-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a JM  |2 bicssc 
100 1 |a Remy Allard  |4 auth 
700 1 |a Jocelyn Faubert  |4 auth 
700 1 |a Denis G. Pelli  |4 auth 
245 1 0 |a Using Noise to Characterize Vision 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (127 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Noise has been widely used to investigate the processing properties of various visual functions (e.g. detection, discrimination, attention, perceptual learning, averaging, crowding, face recognition), in various populations (e.g. older adults, amblyopes, migrainers, dyslexic children), using noise along various dimensions (e.g. pixel noise, orientation jitter, contrast jitter). The reason to use external noise is generally not to characterize visual processing in external noise per se, but rather to reveal how vision works in ordinary conditions when performance is limited by our intrinsic noise rather than externally added noise. For instance, reverse correlation aims at identifying the relevant information to perform a given task in noiseless conditions and measuring contrast thresholds in various noise levels can be used to understand the impact of intrinsic noise that limits sensitivity to noiseless stimuli. Why use noise? Since Fechner named it, psychophysics has always emphasized the systematic investigation of conditions that break vision. External noise raises threshold hugely and selectively. In hearing, Fletcher used noise in his famous critical-band experiments to reveal frequency-selective channels in hearing. Critical bands have been found in vision too. More generally, the big reliable effects of noise give important clues to how the system works. And simple models have been proposed to account for the effects of visual noise. As noise has been more widely used, questions have been raised about the simplifying assumptions that link the processing properties in noiseless conditions to measurements in external noise. For instance, it is usually assumed that the processing strategy (or mechanism) used to perform a task and its processing properties (e.g. filter tuning) are unaffected by the addition of external noise. Some have suggested that the processing properties could change with the addition of external noise (e.g. change in filter tuning or more lateral masking in noise), which would need to be considered before drawing conclusions about the processing properties in noiseless condition. Others have suggested that different processing properties (or mechanisms) could be solicited in low and high noise conditions, complicating the characterization of processing properties in noiseless condition based on processing properties identified in noise conditions. The current Research Topic probes further into what the effects of visual noise tell us about vision in ordinary conditions. Our Editorial gives an overview of the articles in this special issue. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Psychology  |2 bicssc 
653 |a Linear amplifier model 
653 |a Contrast jitter 
653 |a Noise 
653 |a perceptual template model 
653 |a bandpass noise 
653 |a Equivalent input noise 
653 |a noise image classification 
653 |a phase noise 
856 4 0 |a www.oapen.org  |u http://journal.frontiersin.org/researchtopic/1423/using-noise-to-characterize-vision  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/61795  |7 0  |z DOAB: description of the publication