Veech Groups and Translation Coverings
A translation surface is obtained by taking plane polygons and gluing their edges by translations. We ask which subgroups of the Veech group of a primitive translation surface can be realised via a translation covering. For many primitive surfaces we prove that partition stabilising congruence subgr...
Збережено в:
Автор: | |
---|---|
Формат: | Електронний ресурс Частина з книги |
Мова: | Англійська |
Опубліковано: |
KIT Scientific Publishing
2013
|
Предмети: | |
Онлайн доступ: | DOAB: download the publication DOAB: description of the publication |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Резюме: | A translation surface is obtained by taking plane polygons and gluing their edges by translations. We ask which subgroups of the Veech group of a primitive translation surface can be realised via a translation covering. For many primitive surfaces we prove that partition stabilising congruence subgroups are the Veech group of a covering surface. We also address the coverings via their monodromy groups and present examples of cyclic coverings in short orbits, i.e. with large Veech groups. |
---|---|
Фізичний опис: | 1 electronic resource (X, 136 p. p.) |
ISBN: | KSP/1000038927 9783731501800 |
Доступ: | Open Access |