Video-to-Video Face Recognition for Low-Quality Surveillance Data
The availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face sear...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
KIT Scientific Publishing
2018
|
Series: | Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_62070 | ||
005 | 20210212 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210212s2018 xx |||||o ||| 0|eng d | ||
020 | |a KSP/1000083168 | ||
020 | |a 9783731507994 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5445/KSP/1000083168 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
100 | 1 | |a Herrmann, Christian |4 auth | |
245 | 1 | 0 | |a Video-to-Video Face Recognition for Low-Quality Surveillance Data |
260 | |b KIT Scientific Publishing |c 2018 | ||
300 | |a 1 electronic resource (IX, 153 p. p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face search. Novel concepts for multi-scale analysis, dataset augmentation, CNN loss function, and sequence description lead to improvements over state-of-the-art methods on surveillance video footage. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-sa/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-sa/4.0/ | ||
546 | |a English | ||
653 | |a face | ||
653 | |a recognition | ||
653 | |a video | ||
653 | |a Videoverarbeitung | ||
653 | |a Gesichtswiederkennung | ||
856 | 4 | 0 | |a www.oapen.org |u https://www.ksp.kit.edu/9783731507994 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/62070 |7 0 |z DOAB: description of the publication |