Visual Sensors

Visual sensors are able to capture a large quantity of information from the environment around them. A wide variety of visual systems can be found, from the classical monocular systems to omnidirectional, RGB-D, and more sophisticated 3D systems. Every configuration presents some specific characteri...

Full description

Saved in:
Bibliographic Details
Main Author: Reinoso Garcia, Oscar (auth)
Other Authors: Payá, Luis (auth)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
n/a
LRF
FOV
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_62289
005 20210212
003 oapen
006 m o d
007 cr|mn|---annan
008 20210212s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-339-2 
020 |a 9783039283385 
020 |a 9783039283392 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-339-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Reinoso Garcia, Oscar  |4 auth 
700 1 |a Payá, Luis  |4 auth 
245 1 0 |a Visual Sensors 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (738 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Visual sensors are able to capture a large quantity of information from the environment around them. A wide variety of visual systems can be found, from the classical monocular systems to omnidirectional, RGB-D, and more sophisticated 3D systems. Every configuration presents some specific characteristics that make them useful for solving different problems. Their range of applications is wide and varied, including robotics, industry, agriculture, quality control, visual inspection, surveillance, autonomous driving, and navigation aid systems. In this book, several problems that employ visual sensors are presented. Among them, we highlight visual SLAM, image retrieval, manipulation, calibration, object recognition, navigation, etc. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a recognition algorithm 
653 |a n/a 
653 |a 3D ConvNets 
653 |a consistent line clustering 
653 |a skeletal data 
653 |a fused point and line feature matching 
653 |a soft decision tree 
653 |a texture retrieval 
653 |a vision system 
653 |a laser sensor 
653 |a neural network 
653 |a iris segmentation 
653 |a correlation filters 
653 |a embedded systems 
653 |a underwater imaging 
653 |a stereo vision 
653 |a seam-line 
653 |a image processing 
653 |a quality control 
653 |a dynamic programming 
653 |a visual information fusion 
653 |a semantic segmentation 
653 |a parallel line 
653 |a textile retrieval 
653 |a structure extraction 
653 |a line scan camera 
653 |a orientation relevance 
653 |a measurement error 
653 |a rotation-angle 
653 |a star image prediction 
653 |a convolutional neural network (CNN) 
653 |a tightly-coupled VIO 
653 |a visual sensors 
653 |a stereo 
653 |a parking assist system 
653 |a visual detection 
653 |a omnidirectional imaging 
653 |a RGB-D SLAM 
653 |a narrow butt joint 
653 |a appearance-temporal features 
653 |a vision-guided robotic grasping 
653 |a scale invariance 
653 |a support vector machine (SVM) 
653 |a straight wing aircraft 
653 |a statistical information of gray-levels differences 
653 |a Local Binary Patterns 
653 |a robotics 
653 |a mobile robots 
653 |a textile localization 
653 |a indoor environment 
653 |a CLOSIB 
653 |a geometric moments 
653 |a perceptually uniform histogram 
653 |a single-shot 3D shape measurement 
653 |a salient region detection 
653 |a person re-identification 
653 |a calibration 
653 |a stereo camera 
653 |a simplified initialization strategy 
653 |a LSTM 
653 |a SLAM 
653 |a image mosaic 
653 |a convolutional neural network 
653 |a lane marking detection 
653 |a finger alphabet 
653 |a robot manipulation 
653 |a patrol robot 
653 |a inverse compositional Gauss-Newton algorithm 
653 |a checkerboard 
653 |a action localization 
653 |a hybrid histogram descriptor 
653 |a pivotal frames 
653 |a lane marking reconstruction 
653 |a warp function 
653 |a visual localization 
653 |a RGB-D 
653 |a automatic calibration 
653 |a Siamese network 
653 |a object recognition 
653 |a human visual system 
653 |a LRF 
653 |a Gray code 
653 |a visual tracking 
653 |a motion-aware 
653 |a visual odometry 
653 |a adaptive update strategy 
653 |a Manhattan frame estimation 
653 |a vibration 
653 |a confidence response map 
653 |a lane marking 
653 |a 3D reconstruction 
653 |a indoor visual SLAM 
653 |a pose estimation 
653 |a global feature descriptor 
653 |a sweet pepper 
653 |a texture classification 
653 |a ego-motion estimation 
653 |a pose estimates 
653 |a planes intersection 
653 |a adaptive model 
653 |a support vector machines 
653 |a motif co-occurrence histogram 
653 |a handshape recognition 
653 |a non-rigid reconstruction 
653 |a camera calibration 
653 |a map representation 
653 |a optical flow 
653 |a robotic welding 
653 |a FOV 
653 |a background dictionary 
653 |a appearance based model 
653 |a Visual Sensors 
653 |a spatial transformation 
653 |a star sensor 
653 |a image retrieval 
653 |a depth vision 
653 |a iterative closest point 
653 |a automated design 
653 |a semantic mapping 
653 |a regression based model 
653 |a seam tracking 
653 |a image binarization 
653 |a GTAW 
653 |a boosted decision tree 
653 |a pedestrian detection 
653 |a presentation attack detection 
653 |a visible light and near-infrared light camera sensors 
653 |a large field of view 
653 |a fringe projection profilometry 
653 |a sensors combination 
653 |a catadioptric sensor 
653 |a RGB-D sensor 
653 |a texture description 
653 |a UAV image 
653 |a motion estimation 
653 |a extrinsic calibration 
653 |a visual sensor 
653 |a advanced driver assistance system (ADAS) 
653 |a content-based image retrieval 
653 |a action segmentation 
653 |a stereo-vision 
653 |a visual mapping 
653 |a around view monitor (AVM) system 
653 |a illumination 
653 |a speed measurement 
653 |a Richardson-Lucy algorithm 
653 |a digital image correlation 
653 |a point cloud 
653 |a receptive field correspondence 
653 |a human visual attention 
653 |a camera pose 
653 |a sign language 
653 |a symmetry axis 
653 |a end-to-end architecture 
653 |a local parallel cross pattern 
653 |a iris recognition 
653 |a depth image registration 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2141  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/62289  |7 0  |z DOAB: description of the publication