Dynamic Switching State Systems for Visual Tracking

This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought t...

Full description

Saved in:
Bibliographic Details
Main Author: Becker, Stefan (auth)
Format: Electronic Book Chapter
Language:English
Published: Karlsruhe KIT Scientific Publishing 2020
Series:Karlsruher Schriften zur Anthropomatik
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together.
Physical Description:1 electronic resource (228 p.)
ISBN:KSP/1000122541
Access:Open Access