Dynamic Switching State Systems for Visual Tracking
This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought t...
Spremljeno u:
Glavni autor: | |
---|---|
Format: | Elektronički Poglavlje knjige |
Jezik: | engleski |
Izdano: |
Karlsruhe
KIT Scientific Publishing
2020
|
Serija: | Karlsruher Schriften zur Anthropomatik
|
Teme: | |
Online pristup: | DOAB: download the publication DOAB: description of the publication |
Oznake: |
Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
|
Sažetak: | This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together. |
---|---|
Opis fizičkog objekta: | 1 electronic resource (228 p.) |
ISBN: | KSP/1000122541 |
Pristup: | Open Access |