Dynamic Switching State Systems for Visual Tracking
This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought t...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | Électronique Chapitre de livre |
Langue: | anglais |
Publié: |
Karlsruhe
KIT Scientific Publishing
2020
|
Collection: | Karlsruher Schriften zur Anthropomatik
|
Sujets: | |
Accès en ligne: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together. |
---|---|
Description matérielle: | 1 electronic resource (228 p.) |
ISBN: | KSP/1000122541 |
Accès: | Open Access |