Recurrent Neural Networks for Temporal Data Processing

The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving...

Full description

Saved in:
Bibliographic Details
Other Authors: Cardot, Hubert (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2011
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_64931
005 20210420
003 oapen
006 m o d
007 cr|mn|---annan
008 20210420s2011 xx |||||o ||| 0|eng d
020 |a 631 
020 |a 9789533076850 
020 |a 9789535155218 
040 |a oapen  |c oapen 
024 7 |a 10.5772/631  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQ  |2 bicssc 
100 1 |a Cardot, Hubert  |4 edt 
700 1 |a Cardot, Hubert  |4 oth 
245 1 0 |a Recurrent Neural Networks for Temporal Data Processing 
260 |b IntechOpen  |c 2011 
300 |a 1 electronic resource (114 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving through time. Their internal memory gives them the ability to naturally take time into account. Valuable approximation results have been obtained for dynamical systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-sa/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-sa/3.0/ 
546 |a English 
650 7 |a Artificial intelligence  |2 bicssc 
653 |a Neural networks & fuzzy systems 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/102/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/64931  |7 0  |z DOAB: description of the publication