Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in h...

Full description

Saved in:
Bibliographic Details
Other Authors: Del Ser, Javier (Editor), Osaba, Eneko (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_66931
005 20210420
003 oapen
006 m o d
007 cr|mn|---annan
008 20210420s2018 xx |||||o ||| 0|eng d
020 |a intechopen.71401 
020 |a 9781789233292 
020 |a 9781789233285 
020 |a 9781838815721 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.71401  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBT  |2 bicssc 
100 1 |a Del Ser, Javier  |4 edt 
700 1 |a Osaba, Eneko  |4 edt 
700 1 |a Del Ser, Javier  |4 oth 
700 1 |a Osaba, Eneko  |4 oth 
245 1 0 |a Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization 
260 |b IntechOpen  |c 2018 
300 |a 1 electronic resource (70 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Probability & statistics  |2 bicssc 
653 |a Optimization 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/6587/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/66931  |7 0  |z DOAB: description of the publication