Bayesian Inference on Complicated Data

Due to great applications in various fields, such as social science, biomedicine, genomics, and signal processing, and the improvement of computing ability, Bayesian inference has made substantial developments for analyzing complicated data. This book introduces key ideas of Bayesian sampling method...

Full description

Saved in:
Bibliographic Details
Other Authors: Tang, Niansheng (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_67608
005 20210420
003 oapen
006 m o d
007 cr|mn|---annan
008 20210420s2020 xx |||||o ||| 0|eng d
020 |a intechopen.83214 
020 |a 9781838803865 
020 |a 9781838803858 
020 |a 9781839627040 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.83214  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBW  |2 bicssc 
100 1 |a Tang, Niansheng  |4 edt 
700 1 |a Tang, Niansheng  |4 oth 
245 1 0 |a Bayesian Inference on Complicated Data 
260 |b IntechOpen  |c 2020 
300 |a 1 electronic resource (118 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Due to great applications in various fields, such as social science, biomedicine, genomics, and signal processing, and the improvement of computing ability, Bayesian inference has made substantial developments for analyzing complicated data. This book introduces key ideas of Bayesian sampling methods, Bayesian estimation, and selection of the prior. It is structured around topics on the impact of the choice of the prior on Bayesian statistics, some advances on Bayesian sampling methods, and Bayesian inference for complicated data including breast cancer data, cloud-based healthcare data, gene network data, and longitudinal data. This volume is designed for statisticians, engineers, doctors, and machine learning researchers. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Applied mathematics  |2 bicssc 
653 |a Mathematical modelling 
856 4 0 |a www.oapen.org  |u https://mts.intechopen.com/storage/books/9218/authors_book/authors_book.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/67608  |7 0  |z DOAB: description of the publication