Accounting and Statistical Analyses for Sustainable Development Multiple Perspectives and Information-Theoretic Complexity Reduction
In this Open Access publication Claudia Lemke develops a comprehensive Multi-Level Sustainable Development Index (MLSDI) that is applicable to micro, meso, and macro objects by conducting methodological and empirical research. Multi-level comparability is crucial because the Sustainable Development...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | Électronique Chapitre de livre |
Langue: | anglais |
Publié: |
Springer Nature
2021
|
Collection: | Sustainable Management, Wertschöpfung und Effizienz
|
Sujets: | |
Accès en ligne: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | In this Open Access publication Claudia Lemke develops a comprehensive Multi-Level Sustainable Development Index (MLSDI) that is applicable to micro, meso, and macro objects by conducting methodological and empirical research. Multi-level comparability is crucial because the Sustainable Development Goals (SDGs) at macro level can only be achieved if micro and meso objects contribute. The author shows that a novel information-theoretic algorithm outperforms established multivariate statistical weighting methods such as the principal component analysis (PCA). Overcoming further methodological shortcomings of previous sustainable development indices, the MLSDI avoids misled managerial and political decision making. |
---|---|
Description matérielle: | 1 electronic resource (31 p.) |
ISBN: | 978-3-658-33246-4 9783658332464 |
Accès: | Open Access |