Plant Responses to Hypoxia
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully unde...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_68425 | ||
005 | 20210501 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210501s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-0149-9 | ||
020 | |a 9783036501482 | ||
020 | |a 9783036501499 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-0149-9 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a PS |2 bicssc | |
100 | 1 | |a Loreti, Elena |4 edt | |
700 | 1 | |a Striker, Gustavo |4 edt | |
700 | 1 | |a Loreti, Elena |4 oth | |
700 | 1 | |a Striker, Gustavo |4 oth | |
245 | 1 | 0 | |a Plant Responses to Hypoxia |
260 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | ||
300 | |a 1 electronic resource (288 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Biology, life sciences |2 bicssc | |
653 | |a ethylene | ||
653 | |a Ein2 | ||
653 | |a germination | ||
653 | |a RbohD | ||
653 | |a submergence | ||
653 | |a hypoxia | ||
653 | |a post-submergence recovery | ||
653 | |a legumes | ||
653 | |a plant water relations | ||
653 | |a shoot to root ratio | ||
653 | |a Lotus japonicus | ||
653 | |a leaf greenness | ||
653 | |a leaf desiccation | ||
653 | |a stomatal conductance | ||
653 | |a aerenchyma | ||
653 | |a auxin | ||
653 | |a rice (Oryza sativa) | ||
653 | |a root | ||
653 | |a waterlogging | ||
653 | |a leaf gas exchange | ||
653 | |a waterlogging tolerance | ||
653 | |a organic compound | ||
653 | |a plant growth | ||
653 | |a Physalis peruviana L. | ||
653 | |a anaerobiosis | ||
653 | |a anoxia | ||
653 | |a Arabidopsis | ||
653 | |a flooding | ||
653 | |a rice | ||
653 | |a development | ||
653 | |a apoplastic barrier | ||
653 | |a barrier to radial oxygen loss (ROL) | ||
653 | |a lignin | ||
653 | |a Oryza glumaepatula | ||
653 | |a O. rufipogon | ||
653 | |a rice (O. sativa) | ||
653 | |a suberin | ||
653 | |a wild rice | ||
653 | |a acetolactate synthase | ||
653 | |a ethanol fermentation | ||
653 | |a imidazolinones | ||
653 | |a mode of action | ||
653 | |a aerobic fermentation | ||
653 | |a Oryza sativa | ||
653 | |a Submergence | ||
653 | |a Activity of antioxidant enzymes | ||
653 | |a Chlorophyll content | ||
653 | |a phytoglobin | ||
653 | |a VII Ethylene Response Factor | ||
653 | |a PRT6 N-degron pathway of proteolysis | ||
653 | |a Solanum tuberosum | ||
653 | |a Solanum lycopersicum | ||
653 | |a Solanum dulcamara | ||
653 | |a coleoptile | ||
653 | |a root hypoxia | ||
653 | |a oxygen sensing | ||
653 | |a jasmonate | ||
653 | |a root meristem | ||
653 | |a abiotic stress | ||
653 | |a RNA-seq | ||
653 | |a transcription factor | ||
653 | |a fruit trees | ||
653 | |a Prunus | ||
653 | |a hypertrophied lenticels | ||
653 | |a anaerobic fermentation | ||
653 | |a energy metabolism | ||
653 | |a root respiration | ||
653 | |a anoxic signaling | ||
653 | |a potassium | ||
653 | |a pH | ||
653 | |a acidification | ||
653 | |a fluorescence microscopy | ||
653 | |a Triticum aestivum | ||
653 | |a direct seeding | ||
653 | |a anaerobic germination | ||
653 | |a low O2 stress | ||
653 | |a regulatory mechanism | ||
653 | |a metabolic adaptation | ||
653 | |a drought | ||
653 | |a alternated stress | ||
653 | |a maize | ||
653 | |a teosinte | ||
653 | |a microRNAs | ||
653 | |a metabolomics | ||
653 | |a phloem | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/3441 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/68425 |7 0 |z DOAB: description of the publication |