AI-Based Transportation Planning and Operation

The purpose of this Special Issue is to create an an academic platform whereby high-quality research papers are published on the applications of innovative AI algorithms to transportation planning and operation. The authors present their original research articles related to the applications of AI o...

Full description

Saved in:
Bibliographic Details
Other Authors: Sohn, Keemin (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68522
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-0365-3 
020 |a 9783036503646 
020 |a 9783036503653 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-0365-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Sohn, Keemin  |4 edt 
700 1 |a Sohn, Keemin  |4 oth 
245 1 0 |a AI-Based Transportation Planning and Operation 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (124 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The purpose of this Special Issue is to create an an academic platform whereby high-quality research papers are published on the applications of innovative AI algorithms to transportation planning and operation. The authors present their original research articles related to the applications of AI or machine-learning techniques to transportation planning and operation. The topics of the articles encompass traffic surveillance, traffic safety, vehicle emission reduction, congestion management, traffic speed forecasting, and ride sharing strategy. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a autoencoder 
653 |a deep learning 
653 |a traffic volume 
653 |a vehicle counting 
653 |a CycleGAN 
653 |a bottleneck and gridlock identification 
653 |a gridlock prediction 
653 |a urban road network 
653 |a long short-term memory 
653 |a link embedding 
653 |a traffic speed prediction 
653 |a traffic flow centrality 
653 |a reachability analysis 
653 |a spatio-temporal data 
653 |a artificial neural network 
653 |a context-awareness 
653 |a dynamic pricing 
653 |a reinforcement learning 
653 |a ridesharing 
653 |a supply improvement 
653 |a taxi 
653 |a preventive automated driving system 
653 |a automated vehicle 
653 |a traffic accidents 
653 |a deep neural networks 
653 |a vehicle GPS data 
653 |a driving cycle 
653 |a micro-level vehicle emission estimation 
653 |a link emission factors 
653 |a MOVES 
653 |a black ice 
653 |a CNN 
653 |a prevention 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3543  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68522  |7 0  |z DOAB: description of the publication