Multifunctional Composites

With the progress in nanotechnology and associated production methods, composite materials are becoming lighter, cheaper, more durable, and more versatile. At present, great progress has been made in the design, preparation, and characterization of composite materials, making them smarter and versat...

Full description

Saved in:
Bibliographic Details
Other Authors: Nguyen-Tri, Phuong (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68538
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-0493-3 
020 |a 9783036504926 
020 |a 9783036504933 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-0493-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Nguyen-Tri, Phuong  |4 edt 
700 1 |a Nguyen-Tri, Phuong  |4 oth 
245 1 0 |a Multifunctional Composites 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (200 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a With the progress in nanotechnology and associated production methods, composite materials are becoming lighter, cheaper, more durable, and more versatile. At present, great progress has been made in the design, preparation, and characterization of composite materials, making them smarter and versatile. By creating new properties using suitable fillers and matrix, functional composites can meet the most challenging standards of users, especially in high-tech industries. Advanced composites reinforced by high-performance carbon fibers and nanofillers are popular in the automotive and aerospace industries thanks to their significant advantages, such as high specific strength to weight ratio and noncorrosion properties. In addition to the improvement of the mechanical performance, composite materials today are designed to provide new functions dealing with antibacterial, self-cleaning, self-healing, super-hard, and solar reflective properties for desired end-use applications. On the other hand, composite materials can contribute to mitigating environmental issues by providing renewable energy technologies in conjunction with multifunctional, lightweight energy storage systems with high performance and noncorrosive properties. They are also used to prepare a new generation of batteries and directly contribute to H2 production or CO2 reduction in fuels and chemicals. This Special Issue aims to collect articles reporting on recent developments dealing with preparative methods, design, properties, structure, and characterization methods as well as promising applications of multifunctional composites. It covers potential applications in various areas, such as anticorrosion, photocatalyst, absorbers, superhydrophobic, self-cleaning, antifouling/antibacterial, renewable energy, energy storage systems, construction, and electronics. The modeling and simulation of processes involving the design and preparation of functional and multifunctional composites as well as experimental studies involving these composites are all covered in this Special Issue. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a CuO/ZnO 
653 |a photodegradation 
653 |a nanocomposite 
653 |a methylene blue 
653 |a sunlight 
653 |a photocatalyst 
653 |a dye degradation 
653 |a co-precipitation 
653 |a free vibration analysis 
653 |a doubly-curved shell and panel 
653 |a nano-composites 
653 |a functionally graded carbon nanotube-reinforced composite (FG-CNTRC) 
653 |a four-variable refined shell theory 
653 |a 3D printing 
653 |a FDM method 
653 |a bronze polylactic acid composite 
653 |a response surface method 
653 |a acrylic polyurethane coating 
653 |a nano-SiO2 
653 |a mechanical properties 
653 |a weathering resistance 
653 |a poly (lactic acid) 
653 |a pulp fiber 
653 |a natural fiber reinforced composites 
653 |a epoxidized Tung oil 
653 |a carbon/carbon composites 
653 |a multi-phase coatings 
653 |a oxidation resistance 
653 |a thermal cycling 
653 |a 3D printed coating 
653 |a multi-material additive manufacturing 
653 |a environmental exposure 
653 |a ABS 
653 |a ASA 
653 |a composites 
653 |a chitosan-pectin 
653 |a adsorption 
653 |a polyelectrolyte complex 
653 |a covalent biopolymer framework 
653 |a strawberry 
653 |a edible coating 
653 |a cut fruits 
653 |a post-harvest 
653 |a storage 
653 |a quality 
653 |a milk composition 
653 |a multiphase polydisperse system 
653 |a near-infrared spectroscopy 
653 |a mid-infrared spectroscopy 
653 |a Raman spectroscopy 
653 |a milk optical and acoustical properties 
653 |a milk spectral analysis 
653 |a speed of sound 
653 |a attenuation 
653 |a ultrasonic techniques 
653 |a n/a 
653 |a annealing time 
653 |a crystallize process 
653 |a molecular dynamics 
653 |a NiAu alloy 
653 |a structure 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3559  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68538  |7 0  |z DOAB: description of the publication