Innovative Topologies and Algorithms for Neural Networks

The introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text process...

Full description

Saved in:
Bibliographic Details
Other Authors: Xibilia, Maria Gabriella (Editor), Graziani, Salvatore (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68541
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-0285-4 
020 |a 9783036502847 
020 |a 9783036502854 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-0285-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
100 1 |a Xibilia, Maria Gabriella  |4 edt 
700 1 |a Graziani, Salvatore  |4 edt 
700 1 |a Xibilia, Maria Gabriella  |4 oth 
700 1 |a Graziani, Salvatore  |4 oth 
245 1 0 |a Innovative Topologies and Algorithms for Neural Networks 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (198 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The introduction of new topologies and training procedures to deep neural networks has solicited a renewed interest in the field of neural computation. The use of deep structures has significantly improved state-of-the-art applications in many fields, such as computer vision, speech and text processing, medical applications, and IoT (Internet of Things). The probability of a successful outcome from a neural network is linked to selection of an appropriate network architecture and training algorithm. Accordingly, much of the recent research on neural networks has been devoted to the study and proposal of novel architectures, including solutions tailored to specific problems. This book gives significant contributions to the above-mentioned fields by merging theoretical aspects and relevant applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a facial image analysis 
653 |a facial nerve paralysis 
653 |a deep convolutional neural networks 
653 |a image classification 
653 |a Chinese text classification 
653 |a long short-term memory 
653 |a convolutional neural network 
653 |a Arabic named entity recognition 
653 |a bidirectional recurrent neural network 
653 |a GRU 
653 |a LSTM 
653 |a natural language processing 
653 |a word embedding 
653 |a CNN 
653 |a object detection network 
653 |a attention mechanism 
653 |a feature fusion 
653 |a LSTM-CRF model 
653 |a elements recognition 
653 |a linguistic features 
653 |a POS syntactic rules 
653 |a action recognition 
653 |a fused features 
653 |a 3D convolution neural network 
653 |a motion map 
653 |a long short-term-memory 
653 |a tooth-marked tongue 
653 |a gradient-weighted class activation maps 
653 |a ship identification 
653 |a fully convolutional network 
653 |a embedded deep learning 
653 |a scalability 
653 |a gesture recognition 
653 |a human computer interaction 
653 |a alternative fusion neural network 
653 |a deep learning 
653 |a sentiment attention mechanism 
653 |a bidirectional gated recurrent unit 
653 |a Internet of Things 
653 |a convolutional neural networks 
653 |a graph partitioning 
653 |a distributed systems 
653 |a resource-efficient inference 
653 |a pedestrian attribute recognition 
653 |a graph convolutional network 
653 |a multi-label learning 
653 |a autoencoders 
653 |a long-short-term memory networks 
653 |a convolution neural Networks 
653 |a object recognition 
653 |a sentiment analysis 
653 |a text recognition 
653 |a IoT (Internet of Thing) systems 
653 |a medical applications 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3562  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68541  |7 0  |z DOAB: description of the publication