Integration of Renewables in Power Systems by Multi-Energy System Interaction

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, a...

Full description

Saved in:
Bibliographic Details
Other Authors: Bak-Jensen, Birgitte (Editor), Pillai, Jayakrishnan Radhakrishna (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68562
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-0343-1 
020 |a 9783036503424 
020 |a 9783036503431 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-0343-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Bak-Jensen, Birgitte  |4 edt 
700 1 |a Pillai, Jayakrishnan Radhakrishna  |4 edt 
700 1 |a Bak-Jensen, Birgitte  |4 oth 
700 1 |a Pillai, Jayakrishnan Radhakrishna  |4 oth 
245 1 0 |a Integration of Renewables in Power Systems by Multi-Energy System Interaction 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (358 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a hybrid electricity-natural gas energy systems 
653 |a power to gas (P2G) 
653 |a low-carbon 
653 |a economic environmental dispatch 
653 |a trust region method 
653 |a Levenberg-Marquardt method 
653 |a integrated energy park 
653 |a park partition 
653 |a double-layer optimal scheduling 
653 |a non-cooperative game 
653 |a Nash equilibrium 
653 |a energy flexibility 
653 |a power-to-heat 
653 |a multi energy system 
653 |a flexible demand 
653 |a thermal storage 
653 |a electric boiler 
653 |a estimation of thermal demand 
653 |a integrated energy system 
653 |a integrated demand response 
653 |a medium- and long-term 
653 |a system dynamics 
653 |a user decision 
653 |a photovoltaic generation 
653 |a ultralow-frequency oscillation 
653 |a small-signal model 
653 |a eigenvalue analysis 
653 |a damping torque 
653 |a triple active bridge 
653 |a integrated energy systems 
653 |a DC grid 
653 |a isolated bidirectional DC-DC converter 
653 |a multiport converter 
653 |a combined heat and power system 
653 |a wind power uncertainty 
653 |a scenario method 
653 |a temporal dependence 
653 |a optimization scheduling 
653 |a hydrogen 
653 |a multi-energy systems 
653 |a power system economics 
653 |a renewable energy generation 
653 |a whole system modelling 
653 |a local energy management systems 
653 |a multi-objective optimization 
653 |a rolling time-horizon 
653 |a emission abatement strategies 
653 |a distributed energy systems 
653 |a enhance total transfer capability 
653 |a day-ahead thermal generation scheduling 
653 |a reduce curtailed wind power 
653 |a CO2 emissions 
653 |a commercial buildings 
653 |a flexibility quantification 
653 |a flexibility optimization 
653 |a HVAC systems 
653 |a network operation 
653 |a residential buildings 
653 |a dissemination 
653 |a renewable energy policy 
653 |a renewable energy subsidies 
653 |a solar PV 
653 |a TSTTC of transmission lines 
653 |a sensitivity between TSTTC and reactive power 
653 |a reactive power control method 
653 |a urban integrated heat and power system 
653 |a random fluctuations of renewable energy 
653 |a flexibility scheduling 
653 |a temperature dynamics of the urban heat network 
653 |a heat pumps 
653 |a power grid 
653 |a gas distribution 
653 |a grid expansion planning 
653 |a load-profiles 
653 |a energy system analysis 
653 |a modeling 
653 |a multi-energy system 
653 |a smart energy system 
653 |a self-sufficiency 
653 |a dynamic market 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3583  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68562  |7 0  |z DOAB: description of the publication