Non-associative Structures and Other Related Structures

Leonhard Euler (1707-1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formu...

Full description

Saved in:
Bibliographic Details
Other Authors: Nichita, Florin Felix (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68610
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-255-4 
020 |a 9783039362547 
020 |a 9783039362554 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-255-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a Nichita, Florin Felix  |4 edt 
700 1 |a Nichita, Florin Felix  |4 oth 
245 1 0 |a Non-associative Structures and Other Related Structures 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (106 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Leonhard Euler (1707-1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang-Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler's formulas and the Yang-Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a transcendental numbers 
653 |a Euler formula 
653 |a Yang-Baxter equation 
653 |a Jordan algebras 
653 |a Lie algebras 
653 |a associative algebras 
653 |a coalgebras 
653 |a Euler's formula 
653 |a hyperbolic functions 
653 |a UJLA structures 
653 |a (co)derivation 
653 |a dual numbers 
653 |a operational methods 
653 |a umbral image techniques 
653 |a nonassociative algebra 
653 |a cohomology 
653 |a extension 
653 |a metagroup 
653 |a branching functions 
653 |a admissible representations 
653 |a characters 
653 |a affine Lie algebras 
653 |a super-Virasoro algebras 
653 |a nonassociative 
653 |a product 
653 |a smashed 
653 |a twisted wreath 
653 |a algebra 
653 |a separable 
653 |a ideal 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2372  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68610  |7 0  |z DOAB: description of the publication