Machine Learning in Insurance

Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand...

Full description

Saved in:
Bibliographic Details
Other Authors: Nielsen, Jens Perch (Editor), Asimit, Alexandru (Editor), Kyriakou, Ioannis (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68741
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-448-0 
020 |a 9783039364473 
020 |a 9783039364480 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-448-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Nielsen, Jens Perch  |4 edt 
700 1 |a Asimit, Alexandru  |4 edt 
700 1 |a Kyriakou, Ioannis  |4 edt 
700 1 |a Nielsen, Jens Perch  |4 oth 
700 1 |a Asimit, Alexandru  |4 oth 
700 1 |a Kyriakou, Ioannis  |4 oth 
245 1 0 |a Machine Learning in Insurance 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (260 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries' "preferred methods" were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a deposit insurance 
653 |a implied volatility 
653 |a static arbitrage 
653 |a parameterization 
653 |a machine learning 
653 |a calibration 
653 |a dichotomous response 
653 |a predictive model 
653 |a tree boosting 
653 |a GLM 
653 |a validation 
653 |a generalised linear modelling 
653 |a zero-inflated poisson model 
653 |a telematics 
653 |a benchmark 
653 |a cross-validation 
653 |a prediction 
653 |a stock return volatility 
653 |a long-term forecasts 
653 |a overlapping returns 
653 |a autocorrelation 
653 |a chain ladder 
653 |a Bornhuetter-Ferguson 
653 |a maximum likelihood 
653 |a exponential families 
653 |a canonical parameters 
653 |a prior knowledge 
653 |a accelerated failure time model 
653 |a chain-ladder method 
653 |a local linear kernel estimation 
653 |a non-life reserving 
653 |a operational time 
653 |a zero-inflation 
653 |a overdispersion 
653 |a automobile insurance 
653 |a risk classification 
653 |a risk selection 
653 |a least-squares monte carlo method 
653 |a proxy modeling 
653 |a life insurance 
653 |a Solvency II 
653 |a claims prediction 
653 |a export credit insurance 
653 |a semiparametric modeling 
653 |a VaR estimation 
653 |a analyzing financial data 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2507  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68741  |7 0  |z DOAB: description of the publication