Emerging Trends in TiO2 Photocatalysis and Applications

The semiconductor titanium dioxide (TiO2) has been evolved as a prototypical material to understand the photocatalytic process, and has been demonstrated for various photocatalytic applications such as pollutants degradation, water splitting, heavy metal reduction, CO2 conversion, N2 fixation, bacte...

Full description

Saved in:
Bibliographic Details
Other Authors: Do, Trong-On (Editor), Mohan, Sakar (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68871
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-707-8 
020 |a 9783039367061 
020 |a 9783039367078 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-707-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
100 1 |a Do, Trong-On  |4 edt 
700 1 |a Mohan, Sakar  |4 edt 
700 1 |a Do, Trong-On  |4 oth 
700 1 |a Mohan, Sakar  |4 oth 
245 1 0 |a Emerging Trends in TiO2 Photocatalysis and Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (596 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The semiconductor titanium dioxide (TiO2) has been evolved as a prototypical material to understand the photocatalytic process, and has been demonstrated for various photocatalytic applications such as pollutants degradation, water splitting, heavy metal reduction, CO2 conversion, N2 fixation, bacterial disinfection, etc. Rigorous photocatalytic studies on TiO2 have paved the way to understanding the various chemical processes involved and the physical parameters (optical and electrical) required to design and construct diverse photocatalytic systems. Accordingly, it has been realized that an effective photocatalyst should have ideal band edge potential, narrow band gap energy, reduced charge recombination, enhanced charge separation, improved interfacial charge transfer, surface-rich catalytic sites, etc. As a result, many strategies have been developed to design a variety of photocatalytic systems, which include doping, composite formation, sensitization, co-catalyst loading, etc. Towards highlighting the above-mentioned diversities in TiO2 photocatalysis, there have been many interesting original research works on TiO2, involving material designs for various photocatalytic applications published in this Special Issue. In addition, some excellent review papers have also been published in this Special Issue, focusing on the various TiO2-based photocatalytic systems and their mechanisms and applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a modified L-H model 
653 |a N-TiO2 
653 |a photocatalytic degradation 
653 |a benzene 
653 |a antibacterial 
653 |a copper oxide 
653 |a photocatalyst 
653 |a titanium dioxide 
653 |a thin film 
653 |a visible light 
653 |a photovoltaic conversion 
653 |a interfacial charge-transfer transition 
653 |a 7,7,8,8-tetracyanoquinodimethane 
653 |a Nb-doped TiO2 
653 |a N-doped graphene quantum dots 
653 |a TiO2 
653 |a photocatalytic performance 
653 |a pyridinic N 
653 |a graphitic N 
653 |a solid-phase photocatalytic degradation 
653 |a polyvinyl borate 
653 |a decahedral-shaped anatase titania particles 
653 |a {001} and {101} facets 
653 |a facet-selective metal photodeposition 
653 |a pH dependence 
653 |a zeta potential 
653 |a facet-selective reaction 
653 |a photocatalysis 
653 |a deNOxing 
653 |a Titania 
653 |a photophysics 
653 |a metal oxides 
653 |a environment 
653 |a 2D materials 
653 |a composite 
653 |a iron-doped TiO2 
653 |a photocatalytic activity 
653 |a low UV irradiation 
653 |a hydroxyl radical 
653 |a estriol 
653 |a W-Mo dopants 
653 |a nanoparticles 
653 |a non-metal- doped TiO2 
653 |a nitroaromatic compounds 
653 |a reduction 
653 |a selectivity 
653 |a Titanium dioxide 
653 |a bismuth molybdate 
653 |a lignin 
653 |a UV light 
653 |a Photo-CREC Water II reactor 
653 |a Palladium 
653 |a Hydrogen production 
653 |a Quantum Yield 
653 |a magnetic property 
653 |a reusable 
653 |a photoreduction 
653 |a microporous material 
653 |a adsorption 
653 |a air purification 
653 |a porous glass 
653 |a mesocrystals 
653 |a synthesis 
653 |a modification 
653 |a Ru-Ti oxide catalysts 
653 |a HCl oxidation 
653 |a oxygen species 
653 |a Ce incorporation 
653 |a active phase-support interactions 
653 |a bleached wood support materials 
653 |a 3D photocatalyst 
653 |a UV transmittance 
653 |a floatable 
653 |a recyclable 
653 |a TiO2C composite 
653 |a acid catalyst 
653 |a dehydration 
653 |a fructose 
653 |a 5-Hydroxymethylfurfural 
653 |a Microcystis aeruginosa 
653 |a microcystin 
653 |a controlled periodic illumination 
653 |a advanced oxidation process 
653 |a hexabromocyclododecane 
653 |a environmental management 
653 |a advanced oxidation processes 
653 |a energy band engineering 
653 |a morphology modification 
653 |a applications 
653 |a Titanium dioxide (TiO2) 
653 |a visible-light-sensitive photocatalyst 
653 |a N-doped TiO2 
653 |a plasmonic Au NPs 
653 |a interfacial surface complex (ISC) 
653 |a selective oxidation 
653 |a decomposition of VOC 
653 |a carbon nitride (C3N4) 
653 |a alkoxide 
653 |a ligand to metal charge transfer (LMCT) 
653 |a hydrogen production 
653 |a TiO2-HKUST-1 composites 
653 |a solar light 
653 |a electron transfer 
653 |a graphene quantum dots 
653 |a heterojunction 
653 |a process optimization 
653 |a response surface methodology 
653 |a kinetic study 
653 |a Advanced oxidation processes (AOPs) 
653 |a TiO2 catalyst 
653 |a textile wastewater 
653 |a oxygen vacancy 
653 |a polymeric composites 
653 |a photoelectrochemistry 
653 |a co-modification 
653 |a solar energy conversion 
653 |a p-n heterojunction 
653 |a g-C3N4 
653 |a charge separation 
653 |a semiconductors 
653 |a redox reactions 
653 |a band gap engineering 
653 |a nanostructures 
653 |a n/a 
653 |a in-situ formation 
653 |a anatase nanoparticles 
653 |a H-titanate nanotubes 
653 |a dual-phase 
653 |a low temperature 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2638  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68871  |7 0  |z DOAB: description of the publication