Advances in Differential and Difference Equations with Applications 2020

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete anal...

Full description

Saved in:
Bibliographic Details
Other Authors: Baleanu, Dumitru (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68941
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-871-6 
020 |a 9783039368709 
020 |a 9783039368716 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-871-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a Baleanu, Dumitru  |4 edt 
700 1 |a Baleanu, Dumitru  |4 oth 
245 1 0 |a Advances in Differential and Difference Equations with Applications 2020 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (348 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a dynamic equations 
653 |a time scales 
653 |a classification 
653 |a existence 
653 |a necessary and sufficient conditions 
653 |a fractional calculus 
653 |a triangular fuzzy number 
653 |a double-parametric form 
653 |a FRDTM 
653 |a fractional dynamical model of marriage 
653 |a approximate controllability 
653 |a degenerate evolution equation 
653 |a fractional Caputo derivative 
653 |a sectorial operator 
653 |a fractional symmetric Hahn integral 
653 |a fractional symmetric Hahn difference operator 
653 |a Arrhenius activation energy 
653 |a rotating disk 
653 |a Darcy-Forchheimer flow 
653 |a binary chemical reaction 
653 |a nanoparticles 
653 |a numerical solution 
653 |a fractional differential equations 
653 |a two-dimensional wavelets 
653 |a finite differences 
653 |a fractional diffusion-wave equation 
653 |a fractional derivative 
653 |a ill-posed problem 
653 |a Tikhonov regularization method 
653 |a non-linear differential equation 
653 |a cubic B-spline 
653 |a central finite difference approximations 
653 |a absolute errors 
653 |a second order differential equations 
653 |a mild solution 
653 |a non-instantaneous impulses 
653 |a Kuratowski measure of noncompactness 
653 |a Darbo fixed point 
653 |a multi-stage method 
653 |a multi-step method 
653 |a Runge-Kutta method 
653 |a backward difference formula 
653 |a stiff system 
653 |a numerical solutions 
653 |a Riemann-Liouville fractional integral 
653 |a Caputo fractional derivative 
653 |a fractional Taylor vector 
653 |a kerosene oil-based fluid 
653 |a stagnation point 
653 |a carbon nanotubes 
653 |a variable thicker surface 
653 |a thermal radiation 
653 |a differential equations 
653 |a symmetric identities 
653 |a degenerate Hermite polynomials 
653 |a complex zeros 
653 |a oscillation 
653 |a third order 
653 |a mixed neutral differential equations 
653 |a powers of stochastic Gompertz diffusion models 
653 |a powers of stochastic lognormal diffusion models 
653 |a estimation in diffusion process 
653 |a stationary distribution and ergodicity 
653 |a trend function 
653 |a application to simulated data 
653 |a n-th order linear differential equation 
653 |a two-point boundary value problem 
653 |a Green function 
653 |a linear differential equation 
653 |a exponential stability 
653 |a linear output feedback 
653 |a stabilization 
653 |a uncertain system 
653 |a nonlocal effects 
653 |a linear control system 
653 |a Hilbert space 
653 |a state feedback control 
653 |a exact controllability 
653 |a upper Bohl exponent 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2708  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68941  |7 0  |z DOAB: description of the publication