Piezoelectric Transducers Materials, Devices and Applications

Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such...

Full description

Saved in:
Bibliographic Details
Other Authors: Sanchez-Rojas, Jose Luis (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
leg
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68983
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-857-0 
020 |a 9783039368563 
020 |a 9783039368570 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-857-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Sanchez-Rojas, Jose Luis  |4 edt 
700 1 |a Sanchez-Rojas, Jose Luis  |4 oth 
245 1 0 |a Piezoelectric Transducers  |b Materials, Devices and Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (524 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such as automotive, environment, food, robotics, medicine, biotechnology, communications, and other technologies, with reduced size, lower cost, and higher performance, is now possible, with potential for manufacturing using advanced silicon integrated circuits technology or alternative additive techniques from the mili- to the nano-scale. In this Special Issue, which is focused on piezoelectric transducers, a wide range of topics are covered, including the design, fabrication, characterization, packaging, and system integration or final applications of mili/micro/nano-electro-mechanical systems based transducers. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a cylindrical composite 
653 |a piezoceramic/epoxy composite 
653 |a electromechanical characteristics 
653 |a transducer 
653 |a piezoelectric actuators 
653 |a positioning 
653 |a trajectory control 
653 |a numerical analysis 
653 |a trajectory planning 
653 |a square piezoelectric vibrator 
653 |a resonance 
653 |a piezoelectric diaphragm pump 
653 |a flexible support 
653 |a piezoelectric resonance pump 
653 |a piezoelectric ceramics actuators 
653 |a hysteresis modeling 
653 |a Bouc-Wen model 
653 |a P-type IL 
653 |a MFA control 
653 |a SM control 
653 |a evidence theory 
653 |a active vibration control 
653 |a piezoelectric smart structure 
653 |a piezoelectric material 
653 |a multiphysics simulation 
653 |a finite element method (FEM) 
653 |a fluid-structure interaction (FSI) 
653 |a micro electromechanical systems (MEMS) 
653 |a traveling waves 
653 |a piezoelectric 
653 |a microactuator 
653 |a MEMS 
653 |a piezoelectric current sensing device 
653 |a two-wire power cord 
653 |a cymbal structure 
653 |a force amplification effect 
653 |a sensitivity 
653 |a ciliary bodies touch beam 
653 |a piezoelectric tactile feedback devices 
653 |a anisotropic vibration tactile model 
653 |a human factor experiment 
653 |a nondestructive testing 
653 |a maturity method 
653 |a concrete early-age strength 
653 |a SmartRock 
653 |a ultrasonic waves 
653 |a PZT (piezoelectric) sensors 
653 |a structural health monitoring 
653 |a AlN thin film 
653 |a piezoelectric effect 
653 |a resonant accelerometer 
653 |a z-axis 
653 |a debonding 
653 |a non-destructive testing 
653 |a electromechanical impedance 
653 |a damage detection 
653 |a impedance-based technique 
653 |a damage depth 
653 |a piezoelectric vibration energy harvester 
653 |a frequency up-conversion mechanism 
653 |a impact 
653 |a PZT thick film 
653 |a piezoelectric ceramic materials 
653 |a Duhem model 
653 |a hysteresis model 
653 |a class-C power amplifier 
653 |a diode expander 
653 |a piezoelectric transducers 
653 |a point-of-care ultrasound systems 
653 |a transverse impact 
653 |a frequency up-conversion 
653 |a piezoelectric bimorph 
653 |a human-limb motion 
653 |a hybrid energy harvester 
653 |a cascade-connected transducer 
653 |a low frequency 
653 |a small size 
653 |a finite element 
653 |a acoustic telemetry 
653 |a measurement while drilling 
653 |a energy harvesting 
653 |a pipelines 
653 |a underwater networks 
653 |a wireless sensor networks 
653 |a control algorithm 
653 |a waterproof 
653 |a coating 
653 |a reliability 
653 |a flexible micro-devices 
653 |a aqueous environments 
653 |a seawater 
653 |a capacitive pressure sensors 
653 |a in-situ pressure sensing 
653 |a sensor characterization 
653 |a physiological applications 
653 |a cardiac output 
653 |a aluminum nitride 
653 |a resonator 
653 |a damping 
653 |a quality factor 
653 |a electromechanical coupling 
653 |a implantable middle ear hearing device 
653 |a piezoelectric transducer 
653 |a stimulating site 
653 |a finite element analysis 
653 |a hearing compensation 
653 |a adaptive lens 
653 |a piezoelectric devices 
653 |a fluid-structure interaction 
653 |a moving mesh 
653 |a thermal expansion 
653 |a COMSOL 
653 |a petroleum acoustical-logging 
653 |a piezoelectric cylindrical-shell transducer 
653 |a center-frequency 
653 |a experimental-measurement 
653 |a piezoelectricity 
653 |a visual servo control 
653 |a stepping motor 
653 |a nano-positioner 
653 |a stick-slip 
653 |a piezoelectric energy harvester 
653 |a cut-in wind speed 
653 |a cut-out wind speed 
653 |a energy conservation method 
653 |a critical stress method 
653 |a piezoelectric actuator 
653 |a lever mechanism 
653 |a analytical model 
653 |a stick-slip frication 
653 |a nanopositioning stage 
653 |a piezoelectric hysteresis 
653 |a mark point recognition 
653 |a piecewise fitting 
653 |a compensation control 
653 |a piezo-electromagnetic coupling 
653 |a up-conversion 
653 |a vibration energy harvester 
653 |a multi-directional vibration 
653 |a low frequency vibration 
653 |a hysteresis compensation 
653 |a single-neuron adaptive control 
653 |a Hebb learning rules 
653 |a supervised learning 
653 |a vibration-based energy harvesting 
653 |a multimodal structures 
653 |a frequency tuning 
653 |a nonlinear resonator 
653 |a bistability 
653 |a magnetostatic force 
653 |a robot 
653 |a miniature 
653 |a traveling wave 
653 |a leg 
653 |a piezoelectric actuators (PEAs) 
653 |a asymmetric hysteresis 
653 |a Prandtl-Ishlinskii (PI) model 
653 |a polynomial-modified PI (PMPI) model 
653 |a feedforward hysteresis compensation 
653 |a PIN-PMN-PT 
653 |a 1-3 composite 
653 |a high frequency 
653 |a phased array 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2751  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68983  |7 0  |z DOAB: description of the publication