Advanced Thin Film Materials for Photovoltaic Applications

The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be i...

Full description

Saved in:
Bibliographic Details
Other Authors: Dharmadasa, I. M. (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_68989
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03943-041-3 
020 |a 9783039430406 
020 |a 9783039430413 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03943-041-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Dharmadasa, I. M.  |4 edt 
700 1 |a Dharmadasa, I. M.  |4 oth 
245 1 0 |a Advanced Thin Film Materials for Photovoltaic Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (148 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a electroplating 
653 |a semiconductors 
653 |a large-area electronics 
653 |a characterisation 
653 |a solar cells 
653 |a perovskite solar cell 
653 |a hole blocking layer 
653 |a solution spin-coating 
653 |a TiO2/SnO2 layer 
653 |a anti-reflection coating 
653 |a potential-induced degradation 
653 |a solar cell 
653 |a plasma enhanced chemical vapor deposition 
653 |a organic solar cells 
653 |a perovskite solar cells 
653 |a encapsulation 
653 |a stability 
653 |a Cu(In,Ga)Se2 
653 |a mini-module 
653 |a numerical simulation 
653 |a P1 shunt 
653 |a space charge region (SCR) 
653 |a TCAD 
653 |a transistor effect 
653 |a electrodeposition 
653 |a CdTe film 
653 |a two-electrode configuration 
653 |a thin films 
653 |a electroplating temperature 
653 |a photovoltaic 
653 |a CdTe 
653 |a CdS 
653 |a luminescence 
653 |a spectroscopy 
653 |a CdSe 
653 |a CdTe1−xSex 
653 |a photovoltaics 
653 |a review 
653 |a tin monosulfide 
653 |a tin disulfide 
653 |a chemical solution process 
653 |a absorber 
653 |a buffer 
653 |a renewable energy 
653 |a ethlammonium 
653 |a formamidinium 
653 |a microstructure 
653 |a perovskite 
653 |a SnS/SnS2 
653 |a CdS/CdTe 
653 |a CIGS 
653 |a silicon 
653 |a electroplating of semiconductors 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2757  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/68989  |7 0  |z DOAB: description of the publication