Ensemble Algorithms and Their Applications

In recent decades, the development of ensemble learning methodologies has gained a significant attention from the scientific and industrial community, and found their application in various real-word problems. Theoretical and experimental evidence proved that ensemble models provide a considerably b...

Full description

Saved in:
Bibliographic Details
Other Authors: Pintelas, Panagiotis E. (Editor), Livieris, Ioannis E. (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69084
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-959-1 
020 |a 9783039369584 
020 |a 9783039369591 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-959-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
100 1 |a Pintelas, Panagiotis E.  |4 edt 
700 1 |a Livieris, Ioannis E.  |4 edt 
700 1 |a Pintelas, Panagiotis E.  |4 oth 
700 1 |a Livieris, Ioannis E.  |4 oth 
245 1 0 |a Ensemble Algorithms and Their Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (182 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In recent decades, the development of ensemble learning methodologies has gained a significant attention from the scientific and industrial community, and found their application in various real-word problems. Theoretical and experimental evidence proved that ensemble models provide a considerably better prediction performance than single models. The main aim of this collection is to present the recent advances related to ensemble learning algorithms and investigate the impact of their application in a diversity of real-world problems. All papers possess significant elements of novelty and introduce interesting ensemble-based approaches, which provide readers with a glimpse of the state-of-the-art research in the domain. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2853  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69084  |7 0  |z DOAB: description of the publication